


Imprint

Copyright 2012 Smashing Media GmbH, Freiburg, Germany

Version 1: June 2012

ISBN: 978-3-943075-27-4

Cover Design: Ricardo Gimenes

PR & Press: Stephan Poppe

eBook Strategy: Thomas Burkert

Technical Editing: Talita Telma Stöckle, Andrew Rogerson

Idea & Concept: Smashing Media GmbH

Smashing eBook #19│Mastering CSS3│ 2



ABOUT SMASHING MAGAZINE

Smashing Magazine is an online magazine dedicated to Web designers and 
developers worldwide. Its rigorous quality control and thorough editorial 
work has gathered a devoted community exceeding half a million 
subscribers, followers and fans. Each and every published article is carefully 
prepared, edited, reviewed and curated according to the high quality 
standards set in Smashing Magazine's own publishing policy. Smashing 
Magazine publishes articles on a daily basis with topics ranging from 
business, visual design, typography, front-end as well as back-end 
development, all the way to usability and user experience design. The 
magazine is — and always has been — a professional and independent 
online publication neither controlled nor influenced by any third parties, 
delivering content in the best interest of its readers. These guidelines are 
continually revised and updated to assure that the quality of the published 
content is never compromised.

ABOUT SMASHING MEDIA GMBH

Smashing Media GmbH is one of the world's leading online publishing 
companies in the field of Web design. Founded in 2009 by Sven Lennartz 
and Vitaly Friedman, the company's headquarters is situated in southern 
Germany, in the sunny city of Freiburg im Breisgau. Smashing Media's lead 
publication, Smashing Magazine, has gained worldwide attention since its 
emergence back in 2006, and is supported by the vast, global Smashing 
community and readership. Smashing Magazine had proven to be a 
trustworthy online source containing high quality articles on progressive 
design and coding techniques as well as recent developments in the Web 
design industry.

Smashing eBook #19│Mastering CSS3│ 3

http://www.smashingmagazine.com
http://www.smashingmagazine.com
http://www.smashing-media.com
http://www.smashing-media.com


About this eBook
New possible uses of CSS appear every day, and you shouldn’t miss any of 
them. This eBook Mastering CSS3 brings together tips on the newest 
approaches to CSS, such as CSS animation guidelines, CSS grid frameworks 
and modern techniques for constructing page layouts, among others. Also, 
you will get guidelines on how to use CSS in email newsletters and how to 
code email designs with improved readability and usability for the Web, 
mobile and email desktop.

Table of Contents
CSS3 vs. CSS: A Speed Benchmark

Why We Should Start Using CSS3 And HTML5 Today

Connecting The Dots With CSS3

An Introduction To CSS3 Keyframe Animations

The New Hotness: Using CSS3 Visual Effects

Adventures In The Third Dimension: CSS 3D Transforms

How To Use CSS3 Pseudo-Classes

CSS3 Flexible Box Layout Explained

The Guide To CSS Animation: Principles And Examples

Beercamp: An Experiment With CSS 3D

Using CSS3: Older Browsers And Common Considerations

About The Authors

Smashing eBook #19│Mastering CSS3│ 4



CSS3 vs. CSS: A Speed Benchmark
Trent Walton

I believe in the power, speed and “update-ability” of CSS3. Not having to 
load background images as structural enhancements (such as PNGs for 
rounded corners and gradients) can save time in production (i.e. billable 
hours) and loading (i.e. page speed). At our company, we’ve happily been 
using CSS3 on client websites for over a year now, and I find that 
implementing many of these properties right now is the most sensible way 
to build websites.

Until today, all of that was based on an assumption: that I can produce a 
pixel-perfect Web page with CSS3 quicker than I can with older image-
based CSS methods, and that the CSS3 page will load faster, with a smaller 
overall file size and fewer HTTP requests. As a single use case experiment, I 
decided to design and code a Web page and add visual enhancements 
twice: once with CSS3, and a second time using background images sliced 
directly from the PSD. I timed myself each round that I added the 
enhancements, and when finished, I used Pingdom to measure the loading 
times.

Here’s a fictitious Web page for Mercury Automobiles that might have been 
online had the Interweb existed back in the 1950s. The page was designed 
to showcase specific widely compliant CSS3 properties that in the past 
would have had to be achieved using background images.

Smashing eBook #19│Mastering CSS3│ 5



Smashing eBook #19│Mastering CSS3│ 6



Above is a diagram that breaks down where I applied visual enhancements 
first with CSS3, and then with CSS background images (i.e. the image-based 
approach):

1. linear-gradient

2. border-radius

3. radial-gradient

4. text-shadow

5. box-shadow with RGBa

!e Experiment Process
Day 1
I coded the HTML and CSS from a structural standpoint. That means no 
rounded corners, no shadows, no gradients and no images aside from logos 
and car photographs. I decided to include Web fonts at this phase because I 
wanted to focus on stuff that could also be done with the Web-safe font of 
your choice (Helvetica, Georgia, etc.). Furthermore, @font-face was 
around long before CSS3.

Smashing eBook #19│Mastering CSS3│ 7



Smashing eBook #19│Mastering CSS3│ 8



This gave me a blank canvas to add visual enhancements. The index page 
shows the end of my day 1 work, as well as what unsupported browsers will 
display, the appearance of which is structurally intact and visually pleasing. 
More on this later, but the way I see it, older browsers aren’t penalized with 
a broken layout, and modern browsers are rewarded with a few visual 
bonuses. Part of implementing CSS3 is about planning ahead and designing 
websites that look fine as a fallback.

Day 2
Starting with the base index page, I created a CSS3 page. It took 49 minutes 
to complete. Here is the CSS code (css3.css):

/*-----CSS3 Started on 2/26/11 at 7:28 AM CST-----*/
h1 {
 text-shadow: -3px 2px 0px #514d46; }
#nav {
 -moz-box-shadow: 0px 0px 12px rgba(88, 83, 74, .7);
 -webkit-box-shadow: 0px 0px 12px rgba(88, 83, 74, .7);
 box-shadow: 0px 0px 12px rgba(88, 83, 74, .7);
 background-image: -moz-linear-gradient(top, #5c5850, 
#48473e);
 background-image: -webkit-gradient(linear,left top,left 
bottom,color-stop(0, #5c5850),color-stop(1, #48473e));
 background-image: -webkit-linear-gradient(#5c5850, #48473e); 
 background-image: linear-gradient(top, #5c5850, #48473e); }
nav a {
 -moz-border-radius: 12px;
 -webkit-border-radius: 12px;
 border-radius: 12px; }
nav a:hover {
 background-color: #3a3e38;
 background-color: rgba(47, 54, 48, .7); }
 
nav a.active {
 background-color: #070807;

Smashing eBook #19│Mastering CSS3│ 9



 background-color: rgba(7, 8, 7, .7); }
body {
 background-image: -webkit-gradient(radial, 50% 10%, 0, 50% 
10%, 500, from(#FBF8E3), to(#E6E3D0));
 background-image: -moz-radial-gradient(50% 10%, farthest-
side, #FBF8E3, #E6E3D0); }
#learn_more, #details img {
 -moz-border-radius: 8px;
 -webkit-border-radius: 8px;
 border-radius: 8px;
 -webkit-box-shadow: inset 0px 0px 8px rgba(88, 83, 74, .2);
 -moz-box-shadow: inset 1px 0px 1px rgba(88, 83, 74, .2);
 box-shadow: inset 0px 0px 1px rgba(88, 83, 74, .2); }
#learn_more a {
 -moz-border-radius: 8px;
 -webkit-border-radius: 8px;
 border-radius: 8px;
 background-color: #cc3b23;
 background-image: -moz-linear-gradient(top, #cc3b23, 
#c00b00);
 background-image: -webkit-gradient(linear,left top,left 
bottom,color-stop(0, #cc3b23),color-stop(1, #c00b00));
 background-image: -webkit-linear-gradient(#cc3b23, #c00b00);
 background-image: linear-gradient(top, #cc3b23, #c00b00); }
a {
 -moz-transition: all 0.3s ease-in;
 -o-transition: all 0.3s ease-in;
 -webkit-transition: all 0.3s ease-in;
 transition: all 0.3s ease-in; }
 
/*-----CSS3 Finished on 2/26/11 at 8:17 AM CST (49 minutes) 
-----*/

Smashing eBook #19│Mastering CSS3│ 10



Day 3
I added visual enhancements by slicing and CSS’ing background images 
directly from the PSD. Even though there is less code, all of the extra app-
switching and image-slicing added up to a total of 73 minutes to complete. 
Check out the page for the CSS image-based approach. Here’s the code 
(css.css):

/*-----CSS (the image-based approach) Started on 2/27/11 at 
12:42 PM CST-----*/
#header {
 background: url(../img/navbg.png) left top repeat-x; }
body {
 background: #e6e3d0 url(../img/radial_gradient.jpg) no-
repeat center top; }
#nav {
 background-color: transparent; }
h1 {
 background: url(../img/mercuryautomobiles.png) no-repeat 
center center;text-indent: -9999px; }
#learn_more {
 background-image: url(../img/learn_morebg.jpg);}
#details img {
 background-image: url(../img/detailsbg.jpg);}
#learn_more a {
 background: url(../img/learn_more_abg.jpg) no-repeat;}
.css3 {
 background: url(../img/css3_hover.png) no-repeat center 
top; }
.smashing {
 background: url(../img/smashing_hover.png) no-repeat center 
top; }
.trent {
 background: url(../img/trentwalton_hover.png) no-repeat 
center top;}
.css3:hover {

Smashing eBook #19│Mastering CSS3│ 11



 background: url(../img/css3_hover.png) no-repeat center 
-20px;}
.css:hover {
 background: url(../img/css_hover.png) no-repeat center 
-20px;}
.smashing:hover {
 background: url(../img/smashing_hover.png) no-repeat center 
-20px;}
.trent:hover {
 background: url(../img/trentwalton_hover.png) no-repeat 
center -20px; }
.css {
 background: url(../img/css_hover.png) no-repeat center 
-50px; }
/*-----CSS (the image-based approach) Finished on 2/27/11 at 
1:55 AM CST (1 hour and 13 minutes)-----*/

Smashing eBook #19│Mastering CSS3│ 12



Production Time Results
So, we’re looking at a 24-minute difference: 49 minutes to add visual 
enhancements with CSS3, and 73 minutes to do it with images. For me, 
CSS3 was not only quicker but far more enjoyable, because I was focused 
on only one window (my CSS editor), unless I opted to pull some of the code 
from CSS3 Please. On the other hand, slicing images and switching from 
Photoshop to FTP to the CSS editor and back again was a hassle, and it did 
take longer.

It’s also worth noting that I did my best to stack the deck against CSS3. I 
coded it first so that any initial hashing out would be done before heading 
into day 3. Also, the images I did slice are as optimized as I could reasonably 
make them: one-pixel repeating slivers, and medium-resolution image 
exports. Overall, 24 minutes may not seem like a lot of time, but this is a 
fairly simple page. Imagine how much time (and money) could be saved over 
the course of a year.

What? Still not convinced?…

File Size And Loading Time Results
I took both of my pages over to Pingdom Tools to compare file size and 
loading times.

Smashing eBook #19│Mastering CSS3│ 13



Both pages are pretty fast, but CSS3 prevailed, with 10 fewer requests and a 
file size that was lighter by 81.3 KB. While loading times were close, the 
larger PNG files used on both pages accounted for most of the heft, which 
amounted to a .75 second difference on average. And when we’re talking 3 
to 6 second loading times, those differences sure can add up.

CSS3 CSS Difference

Size 767.9 KB 849.2 KB 81.3 KB

Requests 12 22 10

Smashing eBook #19│Mastering CSS3│ 14



For argument’s sake, I created yet another version of the image-based CSS 
version, with a sprite containing all four images used in the original version, 
and then I measured loading times. This CSS Sprited version did improve 
things, taking HTTP requests from 22 to 19 and the overall size from 849.2 
KB down to 846.7 KB. The way I see it, these differences are minimal and 
would have added to the development time, so it’s all relative.

Without getting too sidetracked, I think the difference in loading times is 
significant. If a website gets 100 hits a day, the difference may not matter 
much, but on a higher traffic website the effect compounds. Shaving 
seconds or even milliseconds off the loading time of a website is no small 
improvement in user experience. The image-based approach could lead to 
upwards of a 15 to 27% drop in page traffic (based on a 5 to 9% per 400 ms 
rate). That’s a lot of dinero to lose. I wonder how much time and money 
could be saved by serving a CSS3 border-radius sign-up button on a 
website with as much traffic as Twitter’s.

Smashing eBook #19│Mastering CSS3│ 15



Another striking example is all the CSS3 that can be found in Gmail’s 
interface. The CSS3 gradients and rounded corners are there to increase 
page speed. Speaking of Gmail’s continued use of HTML5 (and CSS3), 
Adam de Boor had this to say about speeding up page rendering:

Google’s current goal is to get Gmail to load in under a second. Speed 
is a feature.”

And this:

The company has found that using CSS3 can speed the rendering time 
by 12 percent.

Convinced yet? No? Okay, I’ll keep going…

Smashing eBook #19│Mastering CSS3│ 16



!inking About !e Future

WEBSITE UPDATES: THE EASY WAY AND THE HARD WAY

CSS3 really pays off when it comes to making updates and future-proofing 
Web pages from a maintenance perspective. Looking at the Mercury 
Automobiles website, think about what would have to go into changing the 
height of the three-column car images or the width of the bubble hover 
states for the navigation. For the sake of a quick production, I sliced these 
images to match precisely. One option would be to open Photoshop, rebuild 
and resize the images, update the appropriate CSS properties, and upload. 
Another would be to plan ahead and slice “telescoping” images, making one 
end a short rounded corner cap and another longer image on the opposite 
end that slides to fill the interior space. You’ve probably seen and done this 
before:

<div class="border_box_top"></div>
<div class="border_box_bottom">
 <img src="your_content_here.jpg" />
</div>

Smashing eBook #19│Mastering CSS3│ 17



This isn’t ideal. While the technique comes in handy in a variety of instances, 
adding extra HTML just to achieve a rounded corner doesn’t seem efficient 
or sensible.

WHAT IF YOU WANT TO GO RESPONSIVE?

Serving different-sized images and changing the font size to suit a particular 
screen resolution simply couldn’t happen without CSS3. It’s wonderful how 
all of these new properties work together and complement each other. 
Imagine how time-consuming it would be to res-lice background images to 
accommodate varying image and font sizes that display at different screen 
resolutions. Yuk.

!e Take-Away
For me, this simply proves what I’ve known all along: CSS3 pays off when it 
comes to production, maintenance and load times. Let’s revisit the numbers 
once more…

Smashing eBook #19│Mastering CSS3│ 18



CSS CSS3 Results

Production 
time

73 minutes 49 minutes CSS3 33% faster

Size 849.2 KB 767.9 KB CSS3 9.5% smaller

Requests 22 12 CSS3 45% fewer

Yes, this is just one experiment, and the outcome was influenced by my own 
abilities. This isn’t meant to finally prove that implementing CSS3 no matter 
what will always be the right way to go. It’s just food for thought. I encourage 
you to track development and loading times on the websites you work on 
and make the best decision for you and, of course, your client.

We’re all concerned about browser compatibility, and opinions will differ. For 
me and most of my clients, this would be a perfectly acceptable fallback. 
Perhaps with more experiments like this that yield similar results, these 
statistics could be cited to both employers and clients. If a website could be 
produced 49% faster (or even half of that) with CSS3, imagine the benefits: 
money saved, earlier launch times, more time spent on adding “extras” that 
push the product over the top, not to mention a better browsing experience 
for everyone.

Smashing eBook #19│Mastering CSS3│ 19



Why We Should Start Using CSS3 And 
HTML5 Today 
Vitaly Friedman

For a while now, here on Smashing Magazine, we have taken notice of how 
many designers are reluctant to embrace the new technologies such as 
CSS3 or HTML5 because of the lack of full cross-browser support for these 
technologies. Many designers are complaining about the numerous ways 
how the lack of cross-browser compatibility is effectively holding us back 
and tying our hands — keeping us from completely being able to shine and 
show off the full scope of our abilities in our work. Many are holding on to 
the notion that once this push is made, we will wake to a whole new Web — 
full of exciting opportunities just waiting on the other side. So they wait for 
this day. When in reality, they are effectively waiting for Godot.

Just like the elusive character from Beckett’s classic play, this day of full 
cross-browser support is not ever truly going to find its dawn and deliver us 
this wonderful new Web where our work looks the same within the window 
of any and every Web browser. Which means that many of us in the online 
reaches, from clients to designers to developers and on, are going to need 
to adjust our thinking so that we can realistically approach the Web as it is 
now, and more than likely how it will be in the future.

Sometimes it feels that we are hiding behind the lack of cross-browser 
compatibility to avoid learning new techniques that would actually 
dramatically improve our workflow. And that’s just wrong. Without an 
adjustment, we will continue to undersell the Web we have, and the 

Smashing eBook #19│Mastering CSS3│ 20



landscape will remain unexcitingly stale and bound by this underestimation 
and mindset.

Adjustment in Progress
Sorry if any bubbles are bursting here, but we have to wake up to the fact 
that full cross-browser support of new technologies is just not going to 
happen. Some users will still use older browsers and some users will still 
have browsers with deactivated JavaScript or images; some users will be 
having weird view port sizes and some will not have certain plugins installed.

But that’s OK, really.

The Web is a damn flexible medium, and rightly so. We should embrace its 
flexibility rather than trying to set boundaries for the available technologies 
in our mindset and in our designs. The earlier we start designing with the 
new technologies, the quicker their wide adoption will progress and the 
quicker we will get by the incompatibility caused by legacy browsers. More 
and more users are using more advanced browsers every single day, and by 
using new technologies, we actually encourage them to switch (if they can). 
Some users will not be able to upgrade, which is why our designs should 
have a basic fallback for older browsers, but it can’t be the reason to design 
only the fallback version and call it a night.

Smashing eBook #19│Mastering CSS3│ 21



Select[ivizr] is one of the many tools that make it possible to use CSS3 today.

There are so many remarkable things that we, designers and developers, 
can do today: be it responsive designs with CSS3 media queries, rich Web 
typography (with full support today!) or HTML5 video and audio. And there 
are so many useful tools and resources that we can use right away to 
incorporate new technologies in our designs while still supporting older 
browsers. There is just no reason not to use them.

Smashing eBook #19│Mastering CSS3│ 22



We are the ones who can push the cross-browser support of these new 
technologies, encouraging and demanding the new features in future 
browsers. We have this power, and passing on it just because we don’t feel 
like there is no full support of them yet, should not be an option. We need to 
realize that we are the ones putting the wheels in motion and it’s up to us to 
decide what will be supported in the future browsers and what will not.

More exciting things will be coming in the future. We should design for the 
future and we should design for today — making sure that our progressive 
designs work well in modern browsers and work fine in older browsers. The 
crucial mistake would be clinging to the past, trying to work with the old 
nasty hacks and workarounds that will become obsolete very soon.

We can continue to cling to this notion and wait for older browsers to 
become outdated, thereby selling ourselves and our potential short, or we 
can adjust our way of thinking about this and come at the Web from a whole 
new perspective. One where we understand the truth of the situation we are 
faced with. That our designs are not going to look the same in every 
browser and our code will not render the same in every browser. And that’s 
the bottom line.

Smashing eBook #19│Mastering CSS3│ 23



Yaili’s beautiful piece My CSS Wishlist on 24wayslivepage.apple.com. Articles like 
these are the ones that push the boundaries of web design and encourage more 
innovation in the industry.

Smashing eBook #19│Mastering CSS3│ 24



Andy Clarke spoke about this at the DIBI Conference earlier this year (you 
can check his presentation Hardboiled Web Design on Vimeo). He really 
struck a nerve with his presentation, yet still we find so many stalling in this 
dream of complete Web standardization. So we wanted to address this issue 
here and keep this important idea being discussed and circulated. Because 
this waiting is not only hurting those of us working with the Web, but all of 
those who use the Web as well. Mainly through this plethora of untapped 
potential which could improve the overall experience across the spectrum 
for businesses, users and those with the skills to bring this sophisticated, 
rich, powerful new Web into existence.

FOR OUR CLIENTS

Now this will mean different things for different players in the game. For 
example, for our clients this means a much more developed and uniquely 
crafted design that is not bound by the boxes we have allowed our thinking 
to be contained in. However, this does come with a bit of a compromise that 
is expected on the parts of our clients as well. At least it does for this to work 
in the balanced and idealized way these things should play out. But this 
should be expected. Most change does not come without its compromises.

In this case, our clients have to accept the same truism that we do and 
concede that their projects will not look the same across various browsers. 
This is getting easier to convince them of in these times of the expanding 
mobile market, but they may still not be ready to concede this inch on the 
desktop side of the coin. Prices might be adjusted in some cases too, and 
that may be another area that the clients are not willing to accept. But with 
new doors being opened and more innovation, comes more time and 
dedicated efforts. These are a few of the implications for our clients, though 
the expanded innovation is where we should help them focus.

Smashing eBook #19│Mastering CSS3│ 25



In short:

• Conceding to the idea that the project will not be able to look the same 
across various browsers,

• This means more developed and unfettered imaginative designs for our 
clients,

• This could lead to increased costs for clients as well, but with higher 
levels of innovation and

• Client’s visions for what they want will be less hindered by these 
limitations.

FOR THE USERS

The users are the ones who have the least amount invested in most of what 
is going on behind the scenes. They only see the end result, and they often 
do not think too much about the process that is involved which brings it to 
the screens before them. Again, with the mobile market, they have already 
come across the concept of varying interfaces throughout their varied 
devices. They only care about the functionality and most probably the style 
that appeals to them — but this is where their interest tends to end. Unless 
of course, they too are within the industry, and they may give it a second 
thought or more. So all this talk of cross-browser compatibility really doesn’t 
concern them, they really leave all that up to us to worry about.

Smashing eBook #19│Mastering CSS3│ 26



Users only ever tend to notice anything if and when something does not 
work the way they expect it to from one place to the next. In most cases, 
they are willing to show something to a relative, friend or colleague, and 
suddenly from one device to the next, something is different that disrupts 
their ability to do so. That is when they actually take notice. But if we have 
done our jobs correctly, these transitions will remain smooth — even with 
the pushing of the envelopes that we are doing. So there is not much more 
that is going to change for the users other than a better experience. 
Average user is not going to check if a given site has the same rounded 
corners and drop-shadow in two different browsers installed on the user’s 
machine.

In short:

• Potentially less disruptions of experience from one device to another 
and

• An overall improved user experience.

FOR DESIGNERS/DEVELOPERS

We, the designers and developers of the Web, too have to make the same 
concession our clients do and surrender the effort to craft the same exact 
presentation and experience across the vast spectrum of platforms and 
devices. This is not an easy idea to give up for a lot of those playing in these 
fields, but as has been already mentioned, we are allowing so much 
potential to be wasted. We could be taking the Web to new heights, but we 
allow ourselves to get hung up on who gets left behind in the process — and 
as a result we all end up getting left behind. Rather than viewing them as 
separate audiences and approaching them individually, so to speak, we 
allow the limitations of one group to limit us all.

Smashing eBook #19│Mastering CSS3│ 27



Perhaps a divide and conquer mentality should be employed. Image Credit

So this could mean a bit more thought for the desired follow through, and 
we are not suggesting that we strive to appease one group here and damn 
the rest. Instead, we should just take a unified approach, designing for those 
who can see and experience the latest, and another for those who cannot. It 
wouldn’t mean more work if we design with those users in mind and 
produce meaningful and clean code up front and then just adjust it for older 
browsers. Having to remember that not everyone is afforded the privilege of 
choosing which browser they are using. And if necessary, this approach can 
be charged for. So it could lead to more revenue along with exciting new 
opportunities — by bringing some of the fun back into the work that being 
boxed in with limitations has robbed us of.

Smashing eBook #19│Mastering CSS3│ 28



In short:

• Conceding to the idea that the project will not be able to look the same 
across various browsers,

• A more open playing field for designers and developers all around; less 
restricted by this holding pattern,

• More exciting and innovative landscape to attract new clientele,

• Division of project audience into separate presentational approaches 
and

• Probably less work involved because we don’t need the many hacks 
and workarounds we’ve used before.

So What Are We Waiting For?
So if this new approach, or adjusted way of thinking can yield positive 
results across the browsers for everyone involved, then why are we still 
holding back? What is it that we are waiting for? Why not cast off these 
limitations thrown upon our fields and break out of these boxes? The next 
part of the discussion tries to suss out some of the contributing factors that 
could be responsible for keeping us restrained.

Smashing eBook #19│Mastering CSS3│ 29



FEAR FACTOR

The fail awaits, and so some of us opt to stay back. Image by Ben Didier

One contributing factor that has to be considered, is perhaps that we are 
being held back out of fear. This might be a fear of trying something new, 
now that we have gotten so comfortable waiting for that magic day of 
compatibility to come. This fear could also stem from not wanting to stand 
up to some particular clients and try to make them understand this truism of 
the Web and the concessions that need to be made — with regards to 
consistent presentation across the browsers. We get intimated, so to speak, 
into playing along with these unrealistic expectations, rather than trusting 
that we can make them see the truth of the situation. Whatever the cause is 
that drives this factor, we need to face our fears and move on.

Smashing eBook #19│Mastering CSS3│ 30



It’s our responsibility of professionals to deliver high-quality work to our 
clients and advocate on and protect user’s interests. It’s our responsibility to 
confront clients when we have to, and we will have to do it at some point 
anyway, because 100% cross-browser compatibility is just not going to 
happen.

COMFORTABLE FACTOR

A possible contributing factor that we should also look into is that some 
people in the community are just too comfortable with how we design today 
and are not willing to learn new technology. There are those of us who 
already tire of the extra work involved in the testing and coding to make 
everything work as it is, so we have little to no interest at all in an approach 
that seemingly calls for more thought and time. But really, if we start using 
new technologies today, we will have to master a learning curve first, but the 
advantages are certainly worth our efforts. We should see it as the challenge 
that will save us time and deliver better and cleaner code.

To some extent, today we are in the situation in which we were in the 
beginning of 2000s; at those times when the emergence and growing 
support of CSS in browsers made many developers question their approach 
to designing web sites with tables. If the majority of designers passed on 
CSS back then and if the whole design community didn’t push the Web 
standards forward, we probably still would be designing with tables.

Smashing eBook #19│Mastering CSS3│ 31



DOUBT FACTOR

Doubt is another thing we must consider when it comes to our being in hold 
mode, and this could be a major contributor to this issue. We begin to doubt 
ourselves and our ability to pull off this innovative, boundary pushing-kind-
of-work, or to master these new techniques and specs, so we sink into the 
comfort of playing the waiting game and playing it safe with our designs and 
code. We just accept the limitations and quietly work around them, railing on 
against the various vendors and the W3C. We should take the new 
technologies as the challenge to conquer; we’ve learned HTML and CSS 2.1 
and we can learn HTML5 and CSS3, too.

FAITH FACTOR

Undoubtedly, some of us are holding off on moving forward into these new 
areas because we are faithfully clinging to the belief that the cross-browser 
support push will eventually happen. There are those saying that we will be 
better off as a community if we allowed the Web to evolve, and that this 
evolution should not be forced.

Smashing eBook #19│Mastering CSS3│ 32



Faith can be a good thing, but in this case, it can hold you back. Image by 
fotologic

But this is not forcing evolution, it is just evolution. Just like with Darwin’s 
theory, the Web evolves in stages, it does not happen for the entire 
population at once. It is a gradual change over time. And that is what we 
should be allowing to happen with the Web, gradually using and 
implementing features for Web community here and there. This way forward 
progress is happening, and nobody should be held back from these 
evolutionary steps until we all can take them.

Smashing eBook #19│Mastering CSS3│ 33



“IT’S TOO EARLY” FACTOR

Another possible contributor is the ever mocking “It’s too early” factor. Some 
members of the online community faithfully fear that if they go ahead and 
accept this new way forward and begin designing or developing in 
accordance, then as soon as they begin completing projects, the support 
might be dropped and they would need to update the projects they already 
completed in the past. It’s common to think that it’s just too early to work 
with new standards until they are fully implemented in many browsers; 
because it’s just not safe to assume that they will be implemented at all.

However, one needs to understand the difference between two groups of 
new features: the widely accepted ones (CSS3′s media queries, border-
radius or drop-shadows or HTML5 canvas are not going to disappear) and 
the experimental ones (e.g. some OpenType features are currently 
supported only in Firefox 4 Beta). The widely accepted features are safe to 
use and they will not disappear for certain; the experimental features can 
always be extracted in a separate stylesheet and be easily updated and 
maintained when necessary. It might be a good idea not to use 
experimental, unsupported features in large corporate designs unless they 
are not affecting the critical design elements of the design.

VALIDATION FACTOR

We cannot forget to mention that there are also many of us who are refusing 
to dabble in these new waters simply due to the fact that implementing 
some of these techniques or styles would cause a plethora of vendor-
specific pefixes to appear in the stylesheet, thus impeding the validation we 
as professionals strive for.

Smashing eBook #19│Mastering CSS3│ 34



Many of us would never put forth any project that does not fully validate with 
the W3C, and until these new specs are fully standardized and valid, we are 
unwilling to include them in their work. And because using CSS3 usually 
means using vendor-specific prefixes, we shouldn’t be using CSS3. Right?

Jeffrey Way’s article But It Doesn’t Validate

Well, not quite. As Jeffrey Way perfectly explains in his article But it Doesn’t 
Validate, validation is not irrelevant, but the final score of the CSS validator 
might be. As Jeffrey says,

“This score serves no higher purpose than to provide you with 
feedback. It neither contributes to accessibility, nor points out best-
practices. In fact, the validator can be misleading, as it signals errors 
that aren’t errors, by any stretch of the imagination.

Smashing eBook #19│Mastering CSS3│ 35



[...] Validation isn’t a game, and, while it might be fun to test your skills to 
determine how high you can get your score, always keep in mind: it 
doesn’t matter. And never, ever, ever compromise the use of the latest 
doctype, CSS3 techniques and selectors for the sake of validation.”

— Jeffrey Way, But it Doesn’t Validate

Having our work validate 100% is not always the best for the project. If we 
make sure that our code is clean and accessible, and that it validates 
without the CSS3/HTML5-properties, then we should take our work to the 
next level, meanwhile sacrificing part of the validation test results. We 
should not let this factor keep us back. If we have a chance for true 
innovation, then we shouldn’t allow ourselves to be restrained by 
unnecessary boundaries.

All in All…
Whatever the factors that keep us from daring into these new CSS3 styles or 
new HTML5 coding techniques, just for a tangible example, need to be 
gotten over. Plain and simple. We need to move on and start using CSS3 
and HTML5 today. The community will become a much more exciting and 
innovative playground, which in turn will improve experiences for as well as 
draw in more users to this dynamic new Web, which in turn will attract more 
clientele — effectively expanding the market. This is what could potentially 
be waiting on the other side of this fence that we are timidly facing — 
refusing to climb over it. Instead, waiting for a gate to be installed.

Until we get passed this limited way of looking at the situation, only then will 
we continue falling short of the full potential of ourselves and our field. Are 
there any areas that you would love to be venturing into, but you are not 

Smashing eBook #19│Mastering CSS3│ 36



because of the lack of complete cross browser compatibility? Admittedly, I 
was a faith factor member of the community myself — how about you? And 
what CSS3 or HTML5 feature are you going to incorporate into your next 
design?

Smashing eBook #19│Mastering CSS3│ 37



Connecting !e Dots With CSS3
Trent Walton

As a web community, we’ve made a lot of exciting progress in regards to 
CSS3. We’ve put properties like text-shadow & border-radius to 
good use while stepping into background-clip and visual effects like 
transitions and animations. We’ve also spent a great deal of time debating 
how and when to implement these properties. Just because a property isn’t 
widely supported by browsers or fully documented at the moment, it doesn’t 
mean that we shouldn’t be working with it. In fact, I’d argue the opposite.

Best practices for CSS3 usage need to be hashed out in blog posts, during 
spare time, and outside of client projects. Coming up with creative and 
sensible ways to get the most out of CSS3 will require the kind of 
experimentation wherein developers gladly trade ten failures for a single 
success. Right now, there are tons of property combinations and uses out 
there waiting to be discovered. All we have to do is connect the dots. It’s 
time to get your hands dirty and innovate!

Smashing eBook #19│Mastering CSS3│ 38



Where Do I Start?
One of my favorite things to do is to scan a list of CSS properties and 
consider which ones might work well together. What would be possible if I 
was to connect @font-face to text-shadow and the bg-clip:text 
property? How could I string a webkit-transition and opacity 
together in a creative way? Here are a few results from experiments I’ve 
done recently. While some may be more practical than others, the goal here 
is to spark creativity and encourage you to connect a few dots of your own.

Note: While Opera and Firefox may soon implement specs for many of 
the CSS3 properties found here, some of these experiments will 
currently only work in Webkit-browsers like Google Chrome or Safari.

Smashing eBook #19│Mastering CSS3│ 39



Example #1: CSS3 Transitions
A safe place to start with CSS3 visual effects is transitioning a basic CSS 
property like color, background-color, or border on hover. To kick 
things off, let’s take a link color CSS property and connect it to a .4 second 
transition.

Start with your link CSS, including the hover state:

a { color: #e83119; }
a:hover { color:#0a99ae; }

Now, bring in the CSS3 to set and define which property you’re transitioning, 
duration of transition and how that transition will proceed over time. In this 
case we’re setting the color property to fade over .4 seconds with an ease-
out timing effect, where the pace of the transition starts off quickly and 
slows as time runs out. To learn more about timing, check out the Surfin’ 
Safari Blog post on CSS animations. I prefer ease-out most of the time 
simply because it yields a more immediate transition, giving users a more 
immediate cue that something is changing.

a {
-webkit-transition-property: color;
-webkit-transition-duration:.4s;
-webkit-transition-timing:ease-out;
}

Smashing eBook #19│Mastering CSS3│ 40



You can also combine these into a single CSS property by declaring the 
property, duration, and timing function in that order:

a { -webkit-transition: color .4s ease-out; }

View the live example here

The final product should be a red text link that subtly transitions to blue 
when users hover with their mouse pointer. This basic transitioning 
technique can be connected to an infinite amount of properties. Next, let’s 
let’s create a menu bar hover effect where border-thickness is combined 
with a .3 second transition.

To start, we’ll set a series of navigation links with a 3 pixel bottom border, 
and a 50 pixel border on hover:

border-nav a { border-bottom: 3px solid #e83119 }
border-nav a:hover { border-bottom: 50px solid #e83119 }

To bring the transition into the mix, let’s set a transition to gradually extend 
the border thickness over .3 seconds in a single line of CSS:

border-nav a { -webkit-transition: border .3s ease-out; }

Smashing eBook #19│Mastering CSS3│ 41



EXAMPLES

This is just one example of how to use these transitions to enhance links 
and navigation items. Here are a few other sites with similar creative 
techniques:

Team Excellence
The webkit transition on all navigation items, including the main navigation 
set at .2s provides a nice effect without making visitors wait too long for the 
hover state.

Smashing eBook #19│Mastering CSS3│ 42



Ackernaut
Ackernaut has subtle transitions on all link hovers, and extends the property 
to fade the site header in/out.

SimpleBits
The SimpleBits main navigation transitions over .2 seconds with linear 
timing.

Smashing eBook #19│Mastering CSS3│ 43



DesignSwap
On DesignSwap, all text links have a .2 second transitions on hover and the 
swapper profiles fade out to real details about the latest designs.

Smashing eBook #19│Mastering CSS3│ 44



Jack Osborne
Jack Osborne transitions all of the blue links as well as the post title link on 
his home page.

Smashing eBook #19│Mastering CSS3│ 45



Eric E. Anderson
Eric E. Andersion has taken CSS3 implementation even further by 
implementing a transition on his main navigation for background color and 
color alongside border-radius and box-shadow.

Example #2: Background Clip
When connected to properties like text-shadow and @font-face, the 
background-clip property makes all things possible with type. To keep 
things simple, we’ll start with taking a crosshatch image and masking it over 
some text. The code here is pretty simple. Start by wrapping some HTML in 
a div class called bg-clip:

<div class="bg-clip">
<h3>kablamo!</h3>
</div>

Smashing eBook #19│Mastering CSS3│ 46



Now to the CSS. First, set the image you will be masking the text with as the 
background-image. Then, set the -webkit-text-fill-color to 
transparent and define the -webkit-background-clip property for the 
text.

.bg-clip {
background: url(../img/clipped_image.png) repeat;
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}

This opens the door for you to start adding texture or other graphic touches 
to your type without resorting to using actual image files. For even more 
CSS3 text experimentation, we can add the transform property to rotate the 
text (or any element for that matter) to any number of degrees. All it takes is 
a single line of CSS code:

-webkit-transform: rotate(-5deg);
-moz-transform: rotate(-5deg);
-o-transform: rotate (-5deg);

Smashing eBook #19│Mastering CSS3│ 47



Note: While background-clip isn’t available in Firefox or Opera, the transform 
property is, so we’ll set this for each browser.

EXAMPLES

This is a fairly simple implementation, but there are quite a few really 
interesting and innovative examples of this technique:

Smashing eBook #19│Mastering CSS3│ 48



Trent Walton
An experiment of my own, combining bg-clip and @font-face to recreate a 
recent design.

Smashing eBook #19│Mastering CSS3│ 49



Neography
An excellent example of what is possible when you throw rotate, bg-
clip and @font-face properties together.

Smashing eBook #19│Mastering CSS3│ 50



Everyday Works
One of the earliest innovative implementations of CSS text rotation I’ve 
seen.

Smashing eBook #19│Mastering CSS3│ 51



Panic Blog
The Panic blog randomly rotates divs / posts. Be sure to refresh to see 
subtle changes in the degree of rotation.

Smashing eBook #19│Mastering CSS3│ 52



Sam Brown
Sam’s got a really nice text-rotate hover effect on the “stalk” sidebar links.

Smashing eBook #19│Mastering CSS3│ 53



Example #3: CSS Transforms, Box Shadow and RGBa
What used to take multiple divs, pngs and extra markup can now be 
accomplished with a few lines of CSS code. In this example we’ll be 
combining the transform property from example 2 with box-shadow and 
RGBa color. To start things off, we’ll create 4 image files, each showing a 
different version of the Smashing Magazine home page over time with a 
class for the shadow and a specific class to achieve a variety of rotations.

Here’s the HTML:

<div class="boxes">
<img class="smash1 shadowed" src="../img/smash1.jpg" 
alt="2007"/>
<img class="smash2 shadowed" src="../img/smash2.jpg" 
alt="2008"/>

Smashing eBook #19│Mastering CSS3│ 54



<img class="smash3 shadowed" src="../img/smash3.jpg" 
alt="2009"/>
<img class="smash4 shadowed" src="../img/smash4.jpg" 
alt="2010"/>
</div>

Let’s set up the CSS for the RGBA Shadow:

.shadowed {
border: 3px solid #fff;
-o-box-shadow: 0 3px 4px rgba(0,0,0,.5);
-moz-box-shadow: 0 3px 4px rgba(0,0,0,.5);
-webkit-box-shadow: 0 3px 4px rgba(0,0,0,.5);
box-shadow: 0 3px 4px rgba(0,0,0,.5);
}

Before moving forward, let’s be sure we understand each property here. The 
box-shadow property works just like any drop shadow. The first two 
numbers define the shadow’s offset for the X and Y coordinates. Here we’ve 
set the shadow to 0 for the X, and 3 for the Y. The final number is the 
shadow blur size, in this case it’s 4px.

RGBa is defined in a similar manner. RGBa stands for red, green, blue, alpha. 
Here we’ve taken the RGB value for black as 0,0,0 and set it with a 50% 
alpha level at .5 in the CSS.

Now, let’s finish off the effect by adding a little CSS Transform magic to 
rotate each screenshot:

.smash1 { margin-bottom: -125px;
-o-transform: rotate(2.5deg);
-moz-transform: rotate(2.5deg);
-webkit-transform: rotate(2.5deg);
}
.smash2 {
-o-transform: rotate(-7deg);

Smashing eBook #19│Mastering CSS3│ 55



-moz-transform: rotate(-7deg);
-webkit-transform: rotate(-7deg);
}
.smash3 {
-o-transform: rotate(2.5deg);
-moz-transform: rotate(2.5deg);
-webkit-transform: rotate(2.5deg);
}
.smash4 {
margin-top: -40px;
-o-transform: rotate(-2.5deg);
-moz-transform: rotate(-2.5deg);
-webkit-transform: rotate(-2.5deg);
}

Smashing eBook #19│Mastering CSS3│ 56



EXAMPLES

Here are a few additional sites with these properties implemented right now:

Butter Label
This site is jam packed with well-used CSS3. Notice the transform and 
box-shadow properties on the subscribe form.

Smashing eBook #19│Mastering CSS3│ 57



Hope 140
Another site with plenty of CSS3 enhancements, Hope 140’s End Malaria 
campaign site features a collage of photographs that all have the same 
shadow & transform properties outlined in our example.

Smashing eBook #19│Mastering CSS3│ 58



For A Beautiful Web
For A Beautiful Web utilizes RGBa and box-shadow for the overlay video 
clips boxes linked from their 3 master-class DVDs. While you’re there, be 
sure to note the transforms paired with the DVD packaging links.

Smashing eBook #19│Mastering CSS3│ 59



Simon Collison
Simon Collison has implemented RGBa and box-shadow on each of the 
thumbnail links for his new website.

Example #4: CSS3 Animations
If you really want to push the envelope and truly experiment with the latest 
CSS3 properties, you’ve got to try creating a CSS3 keyframe animation. As a 
simple introduction, let’s animate a circle .png image to track the outer 
edges of a rectangle. To begin, let’s wrap circle.png in a div class:

<div class="circle_motion">
<img src="/img/circle.png" alt="circle"/>
</div>

Smashing eBook #19│Mastering CSS3│ 60



The first step in the CSS will be to set the properties for .circle_motion, 
including giving it an animation name:

.circle_motion {
-webkit-animation-name: track;
-webkit-animation-duration: 8s;
-webkit-animation-iteration-count: infinite;
}
Now, all that remains is to declare properties for each 
percentage-based keyframe. To keep things simple here, I’ve 
just broken down the 8 second animation into 4 quarters:
@-webkit-keyframes track {
0% {
margin-top:0px;
}
25% {
margin-top:150px;
}
50% {
margin-top:150px;
margin-left: 300px;
}
75% {
margin-top:0px;
margin-left: 300px;
}
100% {

Smashing eBook #19│Mastering CSS3│ 61



margin-left:0px;
}
}

EXAMPLES

A few examples of CSS3 animations online now:

Hope 140
Hope 140 subtly animates their yellow “Retweet to Donate $10” button’s box 
shadow.

Smashing eBook #19│Mastering CSS3│ 62



Connecting !e Dots With CSS3 (Part II)

Hardboiled Web Design
Andy Clarke puts iteration count, timing function, duration and delay 
properties to good use when animating a detective shadow across the 
background of Hardboiled Web Design.

Smashing eBook #19│Mastering CSS3│ 63



Optimum7
Anthony Calzadilla has recreated the Spider Man opening credits using 
CSS3 with JQuery and HTML5. You can also learn more about the process 
in his article “Pure CSS3 Spiderman Cartoon w/ jQuery and HTML5 – Look 
Ma, No Flash!”.

Smashing eBook #19│Mastering CSS3│ 64



The Many Faces Of…
The Many Faces Of… animates the background position of a div to create 
an effect where characters creep up from the bottom of the page.

Smashing eBook #19│Mastering CSS3│ 65



Trent Walton
I recently wrote a post about CSS3 usage, and animated a blue to green to 
yellow background image for the masthead.

OK, Dots Connected! Now What?
Yes, all of this CSS3 stuff is insanely exciting. If you’re like me, you’ll want to 
start finding places to use it in the real world immediately. With each new 
experimental usage come even more concerns about implementation. Here 
are a few of my ever-evolving opinions about implementing these properties 
online for your consideration.

Smashing eBook #19│Mastering CSS3│ 66



• CSS3 enhancements will never take the place of solid user-experience 
design.

• Motion and animation demands attention. Think about a friend waving 
to get your attention from across a crowded room or a flashing traffic 
light. Heavy-handed or even moderate uses of animation can 
significantly degrade user experience. If you are planning on 
implementing these techniques on a site with any sort of A to B 
conversion goals, be sure to consider the psychology of motion.

• Don’t make people wait on animations. Especially when it comes to 
hover links, be sure there is an immediate state-change cue.

• Many of these effects can be used in a bonus or easter-egg type of 
application. Find places to go the extra mile.

• This is a group effort. Don’t be afraid of failure, enlist the help of other 
developers, join the online discussions, and above all, have fun!

Smashing eBook #19│Mastering CSS3│ 67



An Introduction To CSS3 Keyframe 
Animations
Louis Lazaris

By now you’ve probably heard at least something about animation in CSS3 
using keyframe-based syntax. The CSS3 animations module in the 
specification has been around for a couple of years now, and it has the 
potential to become a big part of Web design.

Using CSS3 keyframe animations, developers can create smooth, 
maintainable animations that perform relatively well and that don’t require 
reams of scripting. It’s just another way that CSS3 is helping to solve a real-
world problem in an elegant manner. If you haven’t yet started learning the 
syntax for CSS3 animations, here’s your chance to prepare for when this 
part of the CSS3 spec moves past the working draft stage.

In this article, we’ll cover all the important parts of the syntax, and we’ll fill 
you in on browser support so that you’ll know when to start using it.

Smashing eBook #19│Mastering CSS3│ 68



A Simple Animated Landscape Scene

Smashing eBook #19│Mastering CSS3│ 69

http://www.impressivewebs.com/demo-files/css3-animated-scene/
http://www.impressivewebs.com/demo-files/css3-animated-scene/


For the purpose of this article, I’ve created a simple animated landscape 
scene to introduce the various aspects of the syntax. You can view the 
demo page to get an idea of what I’ll be describing. The page includes a 
sidebar that displays the CSS code used for the various elements (sun, 
moon, sky, ground and cloud). Have a quick look, and then follow along as I 
describe the different parts of the CSS3 animations module.

(NOTE: Versions of Safari prior to 5.1 have a bug that prevents the animation 
from finishing correctly. See more under the heading “The Animation’s Fill 
Mode”)

I’ll describe the CSS related to only one of the elements: the animated sun. 
That should suffice to give you a good understanding of keyframe-based 
animations. For the other elements in the demo, you can examine the code 
on the demo page using the tabs.

!e @keyframes At-Rule
The first unusual thing you’ll notice about any CSS3 animation code is the 
keyframes @ rule. According to the spec, this specialized CSS @ rule is 
followed by an identifier (chosen by the developer) that is referred to in 
another part of the CSS.

The @ rule and its identifier are then followed by a number of rule sets (i.e. 
style rules with declaration blocks, as in normal CSS code). This chunk of 
rule sets is delimited by curly braces, which nest the rule sets inside the @ 
rule, much as you would find with other @ rules.

Here’s the @ rule we’ll be using:

@keyframes sunrise {
 /* rule sets go here … */
}

Smashing eBook #19│Mastering CSS3│ 70

http://livepage.apple.com/
http://livepage.apple.com/


The word sunrise is an identifier of our choosing that we’ll use to refer to 
this animation.

Notice that I’m using not using any vendor prefixes for all of the code 
examples here and in the demo. I’ll discuss browser support at the end of 
this article, but for now just realize that currently no browser supports this 
standard syntax, so to get the code working, you have to include all the 
vendor prefixes.

!e Keyframe Selectors
Let’s add some rule sets inside the @ rule:

@keyframes sunrise {
   0% {
      bottom: 0;
      left: 340px;
      background: #f00;
   }
   33% {
      bottom: 340px;
      left: 340px;
      background: #ffd630;
   }
   66% {
      bottom: 340px;
      left: 40px;
      background: #ffd630;
   }
   100% {
      bottom: 0;
      left: 40px;
      background: #f00;
   }
}

Smashing eBook #19│Mastering CSS3│ 71



With the addition of those new rule sets, we’ve introduced the keyframe 
selector. In the code example above, the keyframe selectors are 0%, 33%, 
66%, and 100%. The 0% and 100% selectors could be replaced by the 
keywords “from” and “to,” respectively, and you would get the same results.

Each of the four rule sets in this example represents a different snapshot of 
the animated element, with the styles defining the element’s appearance at 
that point in the animation. The points that are not defined (for example, 
from 34% to 65%) comprise the transitional period between the defined 
styles.

Although the spec is still in development, some rules have been defined that 
user agents should follow. For example, the order of the keyframes doesn’t 
really matter. The keyframes will play in the order specified by the 
percentage values, and not necessarily the order in which they appear. 
Thus, if you place the “to” keyframe before the “from” keyframe, the 
animation would still play the same way. Also, if a “to” or “from” (or its 
percentage-based equivalent) is not declared, the browser will automatically 
construct it. So, the rule sets inside the @ rule are not governed by the 
cascade that you find in customary CSS rule sets.

THE KEYFRAMES THAT ANIMATE THE SUN

For the purpose of animating the sun in this demo, I’ve set four keyframes. 
As mentioned, the code above includes comments that describe the 
changes.

Smashing eBook #19│Mastering CSS3│ 72



In the first keyframe, the sun is red (as if it were just rising or setting), and it is 
positioned below ground (i.e. not visible). Naturally, the element itself must 
be positioned relatively or absolutely in order for the left and bottom 
values to have any effect. I’ve also used z-index to stack the elements (to 
make sure, for example, that the ground is above the sun). Take note that 
the only styles shown in the keyframes are the styles that are animated. The 
other styles (such as z-index and position, which aren’t animated) are 
declared elsewhere in the style sheet and thus aren’t shown here.

0% {
 bottom: 0; /* sun at bottom */
 left: 340px; /* sun at right */
 background: #f00; /* sun is red */
}

About one third of the way into the animation (33%), the sun is on the same 
horizontal plane but has risen and changed to a yellow-orange (to represent 
full daylight):

33% {
 bottom: 340px; /* sun rises */
 left: 340px;
 background: #ffd630; /* changes color */
}

Then, at about two thirds into the animation (66%), the sun has moved to the 
left about 300 pixels but stays on the same vertical plane. Notice something 
else in the 66% keyframe: I’ve repeated the same color from the 33% 
keyframe, to keep the sun from changing back to red too early.

66% {
 bottom: 340px;
 left: 40px; /* sun moves left across sky */
 background: #ffd630; /* maintains its color */
}

Smashing eBook #19│Mastering CSS3│ 73

http://www.smashingmagazine.com/2009/09/15/the-z-index-css-property-a-comprehensive-look/
http://www.smashingmagazine.com/2009/09/15/the-z-index-css-property-a-comprehensive-look/


Finally, the sun gradually animates to its final state (the full red) as it 
disappears below the ground.

100% {
 bottom: 0; /* sun sets */
 left: 40px;
 background: #f00; /* back to red */
}

Associating !e Animation Name With An Element
Here’s the next chunk of code we’ll add in our example. It associates the 
animation name (in this case, the word sunrise) with a specific element in 
our HTML:

#sun.animate {
 animation-name: sunrise;
}

Here we’re introducing the animation-name property. The value of this 
property must match an identifier in an existing @keyframes rule, otherwise 
no animation will occur. In some circumstances, you can use JavaScript to 
set its value to none (the only keyword that has been reserved for this 
property) to prevent an animation from occurring.

The object we’ve targeted is an element with an id of sun and a class of 
animate. The reason I’ve doubled up the id and class like this is so that I 
can use scripting to add the class name animate. In the demo, I’ve started 
the page statically; then, with the click of a button, all of the elements with a 
particular class name will have another class appended called animate. This 
will trigger all of the animations at the same time and will allow the animation 
to be controlled by the user.

Smashing eBook #19│Mastering CSS3│ 74



Of course, that’s just one way to do it. As is the case with anything in CSS or 
JavaScript, there are other ways to accomplish the same thing.

!e Animation’s Duration And Timing Function
Let’s add two more lines to our CSS:

#sun.animate {
 animation-name: sunrise;
 animation-duration: 10s;
 animation-timing-function: ease;
}

You can specify the duration of the animation using the animation-
duration property. The duration represents the time taken to complete a 
single iteration of the animation. You can express this value in seconds (for 
example, 4s), milliseconds (2000ms), and seconds in decimal notation 
(3.3s).

The specification doesn’t seem to specify all of the available units of time 
measurement. However, it seems unlikely that anyone would need anything 
longer than seconds; and even then, you could express duration in minutes, 
hours or days simply by calculating those units into seconds or milliseconds.

The animation-timing-function property, when declared for the 
entire animation, allows you to define how an animation progresses over a 
single iteration of the animation. The values for animation-timing-
function are ease, linear, ease-out, step-start and many 
more, as outlined in the spec.

Smashing eBook #19│Mastering CSS3│ 75



For our example, I’ve chosen ease, which is the default. So in this case, 
we can leave out the property and the animation will look the same.

Additionally, you can apply a specific timing function to each keyframe, like 
this:

@keyframes sunrise {
   0% {
      background: #f00;
      left: 340px;
      bottom: 0;
      animation-timing-function: ease;
   }
   33% {
      bottom: 340px;
      left: 340px;
      background: #ffd630;
      animation-timing-function: linear;
   }
   66% {
      left: 40px;
      bottom: 340px;
      background: #ffd630;
      animation-timing-function: steps(4);
   }
   100% {
      bottom: 0;
      left: 40px;
      background: #f00;
      animation-timing-function: linear;
   }
}

Smashing eBook #19│Mastering CSS3│ 76



A separate timing function defines each of the keyframes above. One of 
them is the steps value, which jerks the animation forward a 
predetermined number of steps. The final keyframe (100% or to) also has 
its own timing function, but because it is for the final state of a forward-
playing animation, the timing function applies only if the animation is played 
in reverse.

In our example, we won’t define a specific timing function for each keyframe, 
but this should suffice to show that it is possible.

!e Animation’s Iteration Count And Direction
Let’s now add two more lines to our CSS:

#sun.animate {
 animation-name: sunrise;
 animation-duration: 10s;
 animation-timing-function: ease;
 animation-iteration-count: 1;
 animation-direction: normal;
}

This introduces two more properties: one that tells the animation how many 
times to play, and one that tells the browser whether or not to alternate the 
sequence of the frames on multiple iterations.

The animation-iteration-count property is set to 1, meaning that the 
animation will play only once. This property accepts an integer value or 
infinite.

Smashing eBook #19│Mastering CSS3│ 77



In addition, the animation-direction property is set to normal (the 
default), which means that the animation will play in the same direction (from 
start to finish) each time it runs. In our example, the animation is set to run 
only once, so the property is unnecessary. The other value we could specify 
here is alternate, which makes the animation play in reverse on every 
other iteration. Naturally, for the alternate value to take effect, the 
iteration count needs to have a value of 2 or higher.

!e Animation’s Delay And Play State
Let’s add another two lines of code:

#sun.animate {
 animation-name: sunrise;
 animation-duration: 10s;
 animation-timing-function: ease;
 animation-iteration-count: 1;
 animation-direction: normal;
 animation-delay: 5s;
 animation-play-state: running;
}

First, we introduce the animation-delay property, which does exactly 
what you would think: it allows you to delay the animation by a set amount 
of time. Interestingly, this property can have a negative value, which moves 
the starting point partway through the animation according to negative 
value.

Smashing eBook #19│Mastering CSS3│ 78



The animation-play-state property, which might be removed from the 
spec, accepts one of two possible values: running and paused. This 
value has limited practical use. The default is running, and the value 
paused simply makes the animation start off in a paused state, until it is 
manually played. You can’t specify a paused state in the CSS for an 
individual keyframe; the real benefit of this property becomes apparent 
when you use JavaScript to change it in response to user input or something 
else.

!e Animation’s Fill Mode
We’ll add one more line to our code, the property to define the “fill mode”:

#sun.animate {
 animation-name: sunrise;
 animation-duration: 10s;
 animation-timing-function: ease;
 animation-iteration-count: 1;
 animation-direction: normal;
 animation-delay: 5s;
 animation-play-state: running;
 animation-fill-mode: forwards;
}

The animation-fill-mode property allows you to define the styles of 
the animated element before and/or after the animation executes. A value of 
backwards causes the styles in the first keyframe to be applied before the 
animation runs. A value of forwards causes the styles in the last keyframe 
to be applied after the animation runs. A value of both does both.

Smashing eBook #19│Mastering CSS3│ 79



UPDATE: The animation-fill-mode property is not in the latest draft of 
the spec, but it is found in the editors draft. Also, certain versions of Safari 
(5.0 and older) will only apply a value of “forwards” if there are exactly two 
keyframes defined. These browsers always seems to use the 2nd keyframe 
as the “forwards” state, which is not how other browsers do it; the correct 
behavior uses the final keyframe. This is fixed in Safari 5.1.

Shorthand
Finally, the specification describes shorthand notation for animations, which 
combines six of the properties described above. This includes everything 
except animation-play-state and animation-fill-mode.

Some Notes On !e Demo Page And Browser Support
As mentioned, the code in this article is for animating only a single element 
in the demo: the sun. To see the full code, visit the demo page. You can 
view all of the source together or use the tabs in the sidebar to view the 
code for individual elements in the animation.

The demo does not use any images, and the animation does not rely on 
JavaScript. The sun, moon and cloud are all created using CSS3’s border-
radius, and the only scripting on the page is for the tabs on the right and 
for the button that lets users start and reset the animation.

Here are the browsers that support CSS3 keyframe animations:

• Chrome 2+,

• Safari 4+,

• Firefox 5+,

Smashing eBook #19│Mastering CSS3│ 80



• IE10 PP3,

• iOS Safari 3.2+,

• Android 2.1+.

Although no official announcement has been made, support in Opera is 
expected.

If you code your animations using a single vendor-based syntax, you can 
use a tool like Prefixr or Animation Fill Code to automatically fill in the extra 
code for you.

Smashing eBook #19│Mastering CSS3│ 81



!e New Hotness: Using CSS3 Visual 
Effects
ZURB

Previously in this series on CSS3, we talked not only about how to create 
scalable and compelling buttons but about how to effectively use new CSS3 
properties to speed up development and quickly create rich page elements. 
In this final article of the series, we’ll really get into it and use CSS3 visual 
effects to push the envelope.

Not everything in this article is practical, or even bug-free, but it’s a fun 
primer on what’s in the pipeline for Web design. To get the most from these 
examples, you’ll have to use Safari 4 or Chrome. (Firefox 3.5 can handle 
most of it, but not everything: WebKit is further along than Gecko in its 
tentative CSS support.) We’ll show you how to create impressive image 
galleries, build animated music players and overlay images like a pro. All 
set? Let’s rock.

Create A Polaroid Image Gallery

Smashing eBook #19│Mastering CSS3│ 82



We always try to stay pretty active with our Flickr feed; our chief instigator 
Bryan does a great job of capturing the day-to-day and special events and 
even some of our old work. We wanted a great way to show off these 
photos, so we turned to CSS3 to create a compelling, fun image gallery. The 
Polaroid style is pretty common, but we wanted not only to make it dead-
simple to create the gallery in the markup but also to add styles that would 
have required Javascript just a year or two ago.

THE POLAROID GALLERY MARKUP

First off, we created very simple markup for the gallery, something that 
would be easy to generate automatically using the Flickr API. The markup 
for the entire gallery looks like this:

<ul class="polaroids">
 <li>
    <a href="http://www.flickr.com/photos/zurbinc/
3971679981/" title="Roeland!">
     <img src="image-01.jpg" width="250" height="200" 
alt="Roeland!" />
    </a>
 </li>
 <li>
    <a href="http://www.flickr.com/photos/zurbinc/
3985295842/" title="Discussion">
     <img src="image-02.jpg" width="250" height="200" 
alt="Discussion" />
    </a>
 </li>
</ul>

Smashing eBook #19│Mastering CSS3│ 83



We’ll be using the title element in a minute.

THE BASE STYLE AND LABELS

Our next step was to create the simple Polaroid look. We placed our image 
inside an anchor with a white background and scaled the image container. 
This gave us space for the image labels, which we created using little-known 
CSS tricks: :after and content: attr.

ul.polaroids a:after {
 content: attr(title);
}

What we’re doing here is telling the browser that after it renders the given 
anchor content, add another piece of content. We then generate that piece 
of content with the content: attr(title) element, which pulls a 
specific attribute from the element, in this case the title attribute. Using alt 
would make more sense, but neither Safari nor Firefox has implemented it 
for the content element.

The snippet above tells the browser to take the title attribute and render 
it immediately after the content. Note that the title attribute will be 
rendered within the anchor, which is exactly what we want. We would have 
liked to have used the alt attribute, but Safari and Firefox do not support 
the use of content with it.

Our styling of the anchor element takes care of the formatting of the title 
attribute as well, and we’ve now placed the image title attribute below it 
so that we don’t have to replicate that content in the markup.

Smashing eBook #19│Mastering CSS3│ 84



SCATTERING THE PICTURES

A handful of Polaroids would never be in a perfect grid; they’d be scattered 
over the table. We compromised by messing up the grid a little bit for each 
image: a little rotation here, some displacement there. However, we did not 
want to have to manage that scattering on a per-image basis, so we used 
another new pseudo-class: nth-child.

/* By default, we tilt all images by -2 degrees */
ul.polaroids a {
 -webkit-transform: rotate(-2deg);
 -moz-transform: rotate(-2deg);
}

/* Rotate all even images 2 degrees */
ul.polaroids li:nth-child(even) a {
 -webkit-transform: rotate(2deg);
 -moz-transform: rotate(2deg);
}

/* Don't rotate every third image, but offset its position */
ul.polaroids li:nth-child(3n) a {
 -webkit-transform: none;
 -moz-transform: none;
 position: relative;
 top: -5px;
}

Smashing eBook #19│Mastering CSS3│ 85



These are only a few of the declarations we used; we actually added them 
for everything up to 11n, but you get the idea. As you can see, nth-child 
supports a few different arguments, including even, odd and Xn (where X 
can be any integer). The even and odd declarations are self-explanatory. 
Xn takes every Xth element and applies a particular style; in this example, 
every 3rd. Combining this with odd, even and some more Xn declarations 
means that even though the style won’t really be random, it will appear 
random enough to the average user. You can see the entire set of styles on 
our demo page.

We’re using a new CSS3 property here as well: the CSS transform (shown 
as -webkit- and -moz-transform). The transform property can take a 
number of arguments for different kinds of transformations; in this example, 
we’ll be using rotate and scale. You can see the complete (tentative) list in 
the Safari Visual Effects Guide.

SOME FINAL ANIMATION

Our last touch was to give the image focus on hover; in this case, to enlarge 
and straighten out. We accomplish this using a -webkit-transition that 
is activated by the :hover pseudo-class. Check it out:

ul.polaroids a:hover {
 -webkit-transform: scale(1.25);
 -moz-transform: scale(1.25);
 -webkit-transition: -webkit-transform .15s linear;
 position: relative;
 z-index: 5;
}
ul.polaroids a:hover {
 -webkit-transform: scale(1.25);
 -moz-transform: scale(1.25);
 -webkit-transition: -webkit-transform .15s linear;

Smashing eBook #19│Mastering CSS3│ 86



 position: relative;
 z-index: 5;
}

What’s happening here is that we’re overriding the existing -webkit-
transform to simply scale the image (this eliminates the rotation). The -
webkit-transition tells Webkit-based browsers to animate the 
transform so that the move from one to another is smooth. -webkit-
transition is actually extremely versatile, because it can just as easily 
support color, position (top, right, etc.) and most any other 
property.

That’s how we created our Polaroid gallery. Once you know these new 
tricks, putting them together is actually pretty easy, and the markup is dead 
simple.

We’ve created a live demo page for this gallery in our Playground, a place 
for us ZURBians to create small side projects and samples of cool toys. We’ll 
be linking to the Playground examples throughout this article.

Smashing eBook #19│Mastering CSS3│ 87



Sliding Vinyl Albums With CSS Gradients

Smashing eBook #19│Mastering CSS3│ 88



This example began as a simple experiment with CSS gradients and grew 
into a pretty detailed investigation not just of gradients but of new 
background properties and animation. We’ll show you how to create 
advanced gradients with no images and use layered backgrounds for some 
cool effects.

WRITING THE MARKUP

What we’ve created here is a simple unordered list of albums with slide-out 
album controls. You could use something like this to present your band’s 
albums or to showcase a series of podcasts or any other kind of audio (or 
potentially video) media. Each item in the list is an album, with some fairly 
simple markup:

<div class="album">
 <a href=""><img src="/playground/sliding-vinyl/muse-the-
resistance.jpg" width="500" height="375" alt="Muse: The 
Resistance" /></a>
 <span class="vinyl">
  <div></div>
 </span>
 <ul class="actions">
  <li class="play-pause"><a href=""></a></li>
  <li class="info"><a href=""></a></li>
 </ul>
 <div>
  <h5>Muse</h5>
  <small>The Resistance</small>
 </div>
 <span class="gloss"></span>
</div>

Smashing eBook #19│Mastering CSS3│ 89



It might look like a few extraneous elements are in there, but we’ll be using 
all of them to render our slide-out record and controller buttons.

CREATING THE RECORD

The real trick here was the album. We challenged ourselves to create the 
album without using any images at all (we ended up cheating a bit, but we’ll 
get to that). When it slides out, the album looks like the figure on the left: 
standard black vinyl with a slight shine to it and a couple of control buttons.

You’ll notice that the inside edge of the album is a little jagged, and that’s 
because the album isn’t an image but rather two layered gradients 
generated by the browser and set as the background of the same object. 
This required not only a bit of messing around with the new gradient objects 
in CSS3 but also another CSS3 trick: multiple backgrounds. Check out the 
CSS for the record:

Smashing eBook #19│Mastering CSS3│ 90



ul.tunes li div.album span.vinyl div {
 display: block;
 border: solid 1px black;
 width: 112px;
 height: 112px;
 -webkit-border-radius: 59px;
 -moz-border-radius: 59px;
 -webkit-box-shadow: 0 0 6px rgba(0,0,0,.5);
 -webkit-transition: all .25s linear;
 background:
  -webkit-gradient(
   linear, left top, left bottom,
   from(transparent),
   color-stop(0.1, transparent),
   color-stop(0.5, rgba(255,255,255,0.25)),
   color-stop(0.9, transparent),
   to(transparent)),
  -webkit-gradient(
   radial, 56 56, 10, 56 56, 112,
   from(transparent),
   color-stop(0.01, transparent),
   color-stop(0.021, rgba(0,0,0,1)),
   color-stop(0.09, rgba(0,0,0,1)),
   color-stop(0.1, rgba(28,28,28,1)),
   to(rgba(28,28,28,1)));
 border-top: 1px solid rgba(255,255,255,.25);
}

Smashing eBook #19│Mastering CSS3│ 91



We’ve omitted some of the positioning and other boring CSS pieces (check 
out the live demo for the complete markup). We want to focus here on the 
pieces that are critical to creating the album visually: border-radius and 
-webkit-gradient.

The simplest part was creating a round object: by setting the border radius 
to exactly half of the height and width of the object, the browser masks the 
object to a perfect circle. Watch out, though: unlike in Photoshop, if the 
border radius is higher than half the object’s height or width, the browser 
might simply ignore the declaration. That said, rounding the object is the 
easy part; the tricky part is controlling the gradients.

Two gradients are at work on the object: one creates the album itself 
(complete with the hole in the middle), and the other casts a light across it. 
We’ll start with the shine:

ul.tunes li div.album span.vinyl div {
 ...
 background:
  -webkit-gradient(
   linear, left top, left bottom,
   from(transparent),
   color-stop(0.1, transparent),
   color-stop(0.5, rgba(255,255,255,0.25)),
   color-stop(0.9, transparent),
   to(transparent)),
   ...
}

Smashing eBook #19│Mastering CSS3│ 92



The shine gradient is a linear gradient from the top-left to bottom-left. We 
start with transparent so that the gradient fades in, then we shift the gradient 
to white at the 50% mark (halfway across the album), with 25% opacity. 
We’re using RGBa colors because they allow us to control both the color 
and opacity in the same declaration.

The album itself is more complicated, and it suffers a bit from early 
implementation of the radial gradient.

ul.tunes li div.album span.vinyl div {
 ...
 background:
  ...,
  -webkit-gradient(
   radial, 56 56, 10, 56 56, 112,
   from(transparent),
   color-stop(0.01, transparent),
   color-stop(0.021, rgba(0,0,0,1)),
   color-stop(0.09, rgba(0,0,0,1)),
   color-stop(0.1, rgba(28,28,28,1)),
   to(rgba(28,28,28,1)));
 ...
}

Radial gradients are just as they sound, and just what you’d expect from 
gradients in Photoshop. They begin at the center of the object and track 
across the object in concentric circles. In our case, we wanted to start with 
transparency, then switch to a solid black, and end up with a very dark gray.

Perhaps the most difficult part of the gradient is declaring its size and 
position: radial, 56 56, 10, 56 56, 112. We have five pieces of 
data here: type, starting center, starting diameter, ending center and ending 
diameter. Here’s how they work:

Smashing eBook #19│Mastering CSS3│ 93



• Radial is, of course, where we define this as a circular gradient rather 
than straight (linear) gradient.

• We begin at 56 56, which is exactly half the height and width of our 112-
pixel-tall object. We want the gradient to end with the same center, so 
we repeat 56 56.

• The gradient begins with a diameter of 10 pixel.

• The ending center (56 56) ensures that this is a concentric gradient.

• 112 is our final diameter, the same width as the object.

The radial implementation was still a bit rough around the edges, so we 
played around with these values and the color-stop elements to get the 
effect we wanted. In the future, a more polished implementation won’t be 
quite so trial and error.

Smashing eBook #19│Mastering CSS3│ 94



From there, similar to the linear gradient, we created a series of color-stops 
to go from transparent to black to dark gray. The result of these two 
backgrounds (separated by a comma—thanks, CSS3) is our shiny record. 
Again, you’ll notice the center is a bit rough, but we’re sure future 
implementations of this new element will be cleaner.

The button controls are simply rounded anchors (using border-radius), 
with a couple of image glyphs (we told you we cheated a bit). The final touch 
was to add the animation so that the album would roll out of the sleeve on 
hover.

ADDING IN THE FINAL ANIMATION

To achieve the rolling effect, we paired up a position shift and a rotation 
effect so that, as the object moves to the right, it rotates just the right 
amount to appear as if it’s rolling. Here’s what we did:

ul.tunes li div.album span.vinyl {
 -webkit-transition: all .25s linear;
}

ul.tunes li div.album:hover span.vinyl {
 -webkit-transform: translateX(60px);
}

ul.tunes li div.album:hover span.vinyl div {
 -webkit-transform: rotate(120deg);
}

Smashing eBook #19│Mastering CSS3│ 95



We’re using two transforms, translateX and rotate, on two objects. 
We use the translate instead of standard positioning because transforms 
don’t impact the DOM—from a layout perspective, the object never really 
moves, and so we don’t have to worry about floats going awry or objects 
pushing each other around. Transitions also work better on translation 
transforms than on actual position (left: 20px, etc.) changes.

Gradients have a ways to go, but there are already some cool uses for 
generated gradients. You can even control them at runtime using transitions 
or JavaScript, which opens up yet more possibilities.

We’ve created a live demo page for this gallery in our Playground, so you 
can see it in action and delve deeper into the source code. Enjoy!

Smashing eBook #19│Mastering CSS3│ 96



Sweet Overlays With Border-Image

This last part is perhaps the most practical. We use it in our feedback tool 
Notable every day. The border-image property is new but has some really 
interesting applications. We’ll explain how it works and how we’re using it in 
our flagship application.

THE OVERLAY MARKUP

Overlays in Notable have two parts: the frame and the actual glass overlay. 
The markup for the overlay is pretty simple, consisting of two sibling DIVs:

<div class="note" id="note1">
 <div class="border"></div>
 <div class="overlay"></div>
 <span class="black circle note">1<span class="wrap"></
span></span>
</div>

When we created these overlays, we had a few goals:

• They shouldn’t overly obscure the content beneath them.

• They shouldn’t affect the hue of the content beneath them.

• They must look awesome.

Smashing eBook #19│Mastering CSS3│ 97



To that end, we devised an overlay that would appear as a glass overlay, 
with a slight shine and a nice, fairly bold frame. For the purposes of this 
article, we’ll focus on the frame, which we created using the new border-
image property.

USING BORDER-IMAGE

The new border-image property is a strange beast: very versatile, but 
takes a little getting used to. Here’s what the border-image declaration 
for our frame looks like in the CSS:

div.note div.border {
 border: 5px solid #feb515;
 -webkit-border-radius: 3px;
 -moz-border-radius: 3px;
 -webkit-border-image:
  url(/playground/awesome-overlays/border-image.png) 5 5 5 
5 stretch;
 -moz-border-image:
  url(/playground/awesome-overlays/border-image.png) 5 5 5 
5 stretch;
}

Let’s get the easy stuff out of the way. The border element is both 
required and a fallback: older browsers will still render a usable border for 
the overlay, but border-image requires a defined border width. While 
we’ve been fairly unconcerned with backwards-compatibility in our articles, 
in this case we needed it (Notable has to work in more than just cutting-
edge browsers). This is one of many examples of progressive enhancement 
(or graceful degradation, if you prefer): older browsers render something 
usable, just less pretty. The first progressive piece in here is the border-
radius, which we’ve already discussed at length.

Smashing eBook #19│Mastering CSS3│ 98



The border-image is what we’re interested in. Check out the figure to the 
right; notice the gradient on the frame that goes from top to bottom? It’s a 
simple touch, but adding it to an object that has to scale to many different 
sizes required that we use this new property. And we’re glad we did; 
learning how to use it opened up new possibilities in our coding repertoire. 
Let’s look at just the border-image code again:

url(/playground/awesome-overlays/border-image.png) 5 5 5 5 
stretch;

The syntax is the same for WebKit and Gecko(Mox) browsers. The actual 
declaration is simple. What takes some effort is understanding how to create 
the image file itself.

Border image takes a single image and slices it into nine pieces, which it 
then stretches over the object. We’ve sketched a diagram to explain how 
this works, and we’ve blown up the actual border image file for you to 
compare. Check it out:

Smashing eBook #19│Mastering CSS3│ 99



The browser takes the top-left corner and uses it for the top-left border, and 
then it stretches the top-middle to cover the entire top of the object, and so 
on around the image.

We created an image with transparent center, because border-image will 
stretch the center quadrant across the entire object (which seems 
counterintuitive for a “border” image, but it does make the style a bit more 
versatile). You’ll notice that the actual gradient is present only in quadrants 4 
and 6, because those are the only pieces that will be stretched enough for 
us to see a gradient. The browser actually does a good job of stretching the 
image as long as it’s not too complex, so artifacts aren’t really an issue.

Smashing eBook #19│Mastering CSS3│ 100



The last pieces of the border-image declaration are the size and style: 5 
5 5 5 stretch. The repeated 5s determine the size on each side of the 
object; because we wanted a 5-pixel border, we created an image that was 
15 x 15. If we had used a smaller image, the browser would have had to 
scale the corners as well, and no doubt it would have looked messier. The 
last property, stretch, dictates how the browser actually handles the 
pieces of the image. A great (and amusing) intro to the different styles can 
be found at lrbabe.

PUTTING IT TOGETHER

Combining the frame with the glass overlay center (which is a semi-
transparent PNG) gives us our frame. Using different border images, we 
actually created classes for our different colors (red, blue, etc.), while older 
browsers still get a usable frame without the gradient-edged niceties. This 
isn’t an incredibly complex example, but you can see how useful border-
image can be, especially using an alpha-mapped image format such as 
PNG.

Smashing eBook #19│Mastering CSS3│ 101



We’ve created a live demo page for this gallery in our Playground so that 
you can see it in action and delve deeper into the source code. You can also 
read up on why we created this overlay in our two-part Notable Behind the 
Scenes blog post: part 1 and part 2.

CSS 3 Is Totally Bad Ass
Right? We hope you’ve enjoyed this primer on what we can look forward to 
in the final CSS3 specification. Familiarize yourself with the properties and 
start using them—just be sure to account for browsers that, sadly, will never 
support all of these fun new tricks. You can see how we use CSS3 in our 
work for clients as well as in our own product, Notable. Found a super-
awesome way to use these new properties? We’d love to hear about it in the 
comments!

Smashing eBook #19│Mastering CSS3│ 102

http://www.zurb.com/blog/302
http://www.zurb.com/blog/302
http://www.zurb.com/article/304/behind-the-scenes-building-the-new-visual
http://www.zurb.com/article/304/behind-the-scenes-building-the-new-visual


Adventures In !e !ird Dimension: CSS 
3D Transforms
Peter Gasston

Back in 2009, the WebKit development team proposed a new extension to 
CSS that would allow Web page elements to be displayed and transformed 
on a three-dimensional plane. This proposal was called 3D Transforms, and 
it was soon implemented in Safari for Mac and iOS. About a year later, 
support followed for Chrome, and early in 2011, for Android. Outside of 
WebKit, however, none of the other browser makers seemed to show much 
enthusiasm for it, so it’s remained a fairly niche and underused feature.

That’s set to change, though, as the Firefox and Internet Explorer teams 
have decided to join the party by implementing 3D Transforms in pre-
release versions of their browsers. So, if all goes according to plan, we’ll see 
them in IE 10 and a near-future version of Firefox (possibly 10 or 11, but that’s 
not confirmed yet), both of which are slated for release sometime this year.

That being the case, this is an ideal time to get ahead of the curve and start 
learning about the possibilities and potential of adding an extra dimension to 
your Web pages. This article aims to help you do just that, by taking you on 
a flying tour of the 3D Transforms syntax.

Please bear in mind that in order to see the examples in this article, you’ll 
need a browser that supports 3D Transforms; as I write this, that’s Safari, 
Chrome, IE 10 Platform Preview or Firefox Aurora.

Smashing eBook #19│Mastering CSS3│ 103



!e !ird Dimension
On the Web, we’re accustomed to working in two dimensions: all elements 
have width and height, and we move them around the screen horizontally 
(left to right) and vertically (top to bottom). The move to a third dimension 
can be thought of as adding depth to elements, and adding movement 
towards and away from you (the viewer). Think about 3D films in which 
objects are constantly thrust out of the screen towards you in an attempt to 
demonstrate the possibilities of the extra depth.

To use 3D Transforms in CSS, you’ll need to know about axes (that’s the 
plural of axis, not the plural of axe). If you already know about working in 
three dimensions or remember using axes in math class at school, you can 
skip the next section. For everyone else, here is…

A Quick Primer On Axes
I just mentioned that on the 2-D Web, we move elements around 
horizontally and vertically. Each of these directions is called an axis: the 
horizontal line is known as the x-axis, and the vertical line is the y-axis. If we 
think of the top-left corner of an element as our origin (i.e. the point from 
which movement is measured), a movement to the left is a negative 
movement along the x-axis, and a move to the right is a positive movement 
along the x-axis. The same goes for moving an element up (negative on the 
y-axis) and down (positive on the y-axis).

Smashing eBook #19│Mastering CSS3│ 104



The third dimension is known as the z-axis and, as I said, can be thought of 
as towards or away from you; a negative movement along the z-axis is away 
from you, and a positive movement is towards you.

Showing the three axes: x (left-right), y (up-down) and z (away-towards).

If you’ve read all of this talk of axes and negative movements and you’re 
rubbing your eyes and blinking in disbelief and misunderstanding, don’t 
worry: it will all become clear when you get stuck in the code. Come back 
and read this again after a few examples and it should all be clear.

Smashing eBook #19│Mastering CSS3│ 105



Transformation Functions
The various transformations are all applied with a single CSS property: 
transform — yes, the same property that’s used for 2-D CSS Transforms. 
At the moment, this property is still considered experimental, so remember 
to use all of the browser prefixes, like so:

div {
  -moz-transform: foo;
  -ms-transform: foo;
  -o-transform: foo;
  -webkit-transform: foo;
}

Note that Opera doesn’t currently have an implementation of 3D Transforms, 
but I’m including it here because work is apparently underway. For the sake 
of clarity, in the examples throughout this article, I’ll use only non-prefixed 
properties, but remember to include all of the prefixed ones in your own 
code.

Anyway, the transform property accepts a range of functions as values, 
each of which applies a different transformation. If you’ve used 2-D CSS 
Transforms, then you’ll already know many of these functions because they 
are quite similar (or, in some cases, the same). Here are all of the 3D 
functions:

• matrix3d

• perspective

• rotateX, rotateY, rotateZ, rotate3d

• scaleX, scaleY, scaleZ, scale3d

• translateX, translateY, translateZ, translate3d

Smashing eBook #19│Mastering CSS3│ 106



Now, matrix3d definitely sounds the coolest, but it’s so unbelievably 
complex (it takes 16 values!) that there’s no way I could cover it in this article. 
So, let’s put that aside and take a quick look at the others.

ROTATION

To explain what this does, I’ll have to ask you to do a little mental exercise 
(which will come in useful later in the article, too). Imagine a sheet of card 
with a string running through the middle that fixes it in place. By taking the 
top corners in your fingers, you can move the card up and down, left and 
right, and forwards and backwards, pivoting around the string. This is what 
the rotate() function does. The individual functions rotateX(), 
rotateY() and rotateZ() take a deg (i.e. degree) value and move the 
element around its point of origin (where the string passes through it) by that 
much.

Have a look at our first example (a screenshot is shown below in case you 
don’t have access to a supported browser). Here we’ve rotated each of the 
elements 45° around a different axis (in order: x, y, z), so you can see the 
effect of each. The semi-translucent red box shows the original position of 
the element, and if you mouse over each, you’ll see the transformations 
removed (I’ve used this convention in all of the examples in this article).

Smashing eBook #19│Mastering CSS3│ 107



Each element is rotated 45° around a different axis: x (left), y (center) and z (right).

There is a rotate3d() function as well, but it’s too complex to explain in a 
brief article like this one, so we’ll skip it.

TRANSLATION

This is really just a fancy way of saying “movement.” The functions 
translateX(), translateY() and translateZ() each take a length 
value, which moves the element by that distance along the given axis. So, 
translateX(2em) would move the element 2 ems to the right, and 
translateZ(-10px) would move the element 10 pixels away from the 
viewer. There’s also a shorthand function, translate3d(), which takes 
three values in order, one for each axis, like so: translate3d(x, y, z).

In our second example, we’ve translated each of the elements by -20 pixels 
along a different axis (in order: x, y, z).

Smashing eBook #19│Mastering CSS3│ 108



Each element is translated by -20 pixels along a different axis: x (left), y (center) 
and z (right).

Note that translation of an element is similar to relative positioning, in that it 
doesn’t affect the document’s flow. The translated element will keep its 
position in the flow and will only appear to have moved, meaning it might 
cover or show through surrounding elements.

SCALING

This just means making bigger or smaller. The three functions scaleX(), 
scaleY() and scaleZ() each take a unitless number value, which is used 
as a multiplier. For scaleX() and scaleY(), this is applied directly to the 
width and height; for example, applying scaleY(1.5) to an element with a 
height of 100 pixels would transform it to 150 pixels high, and applying 
scaleX(0.75) to an element with a width of 100 pixels would transform it 
to 75 pixels wide.

The scaleZ() function behaves slightly differently. Transformed elements 
don’t actually have any depth to increase or decrease; what we’re doing is 
more like moving a 2-D object around in 3D space. Instead, the value given 
to scaleZ() acts as a multiplier for the translateZ() function that I 

Smashing eBook #19│Mastering CSS3│ 109



explained in the last section. So, applying both translateZ(10px) and 
scaleZ(2) would translate an element 20 pixels along the z-axis.

There’s also a shorthand property, scale3d(), which, like 
translate3d(), takes three values, one for each of the individual 
functions: scale3d(x,y,z). So, in the following code example, the same 
transformation applies to both of the elements:

.e1 {
   transform: scaleX(1.5) scaleY(1.5) scaleZ(0.75);
}

.e2 {
   transform: scale3d(1.5,1.5,0.75);
}

PERSPECTIVE

The perspective() function is quite simple, but what it actually does is 
quite complex. The function takes a single value, which is a length unit 
greater than 0 (zero). Explaining this is a little complicated; the length is like 
a distance between you and the object that you’re viewing (a tutorial on 
Eleqtriq has a more technical explanation and diagram). For our purposes, 
you just need to know that the lower the number, the more extreme the 3D 
effect will appear; any value below 200px, for example, will make the 
transformation appear very exaggerated, and any value of 1000px or more 
will seem to have no effect at all.

In our third example, we have three transformed elements, each with a 
different value for the perspective() function: 25px, 50px and 200px, 
respectively. Although the difference between the three is very discernible, 
it’s even clearer when you mouse over to see the transformations removed.

Smashing eBook #19│Mastering CSS3│ 110



Each element has a different value for the perspective() function: 25px (left), 50px 
(center) and 200px (right).

Note that I’ve transformed the parent elements (equally) so that we can see 
the degree of perspective more clearly; sometimes the difference in 
perspective values can be imperceptible.

Other Properties
In addition to transform, you’ll need to know about a few other important 
properties.

TRANSFORM-STYLE

If you’ll be applying 3D transformations to the children of an already 
transformed element, then you’ll need to use this property with the value 
preserve-3d (the alternative, and default, is flat). This means that the 
child elements will appear on their own planes; without it, they would appear 
flat in front of their parent.

Our fourth example clearly illustrates the difference; the element on the left 
has the flat value, and on the right, preserve-3d.

Smashing eBook #19│Mastering CSS3│ 111



The element on the left has a transform-style value of flat, and the one on 

the right has a value of preserve-3d.

Something else to note is that if you are transforming child elements, the 
parent must not have an overflow value of hidden; this would also force 
the children into appearing on the same plane.

TRANSFORM-ORIGIN

As mentioned, when you apply a transformation to an element, the change 
is applied around a point directly in the horizontal and vertical middle — like 
the imaginary piece of string we saw in the earlier illustration. Using 
transform-origin, you can change this to any point in the element. 
Acceptable values are pairs of lengths, percentages or positional keywords 
(top, right, etc.). For example:

div {
   transform-origin: right top;
}

Smashing eBook #19│Mastering CSS3│ 112



In our fifth example, you can see the same transformations applied to two 
elements, each of which has a different transform-origin value.

The element on the left has a transform-origin value of center 
center, and the one on the right has a value of right top.

The difference is clearly visible, but even more obvious if you pass the 
mouse over to see the transformation removed.

BACKFACE-VISIBILITY

Depending on which transformation functions you apply, sometimes you will 
move an element around until its front (or “face”) is angled away from you. 
When this happens, the default behavior is for the element to be shown in 
reverse; but if you use backface-visibility with a value of hidden, 
you’ll see nothing instead, not even a background color.

Smashing eBook #19│Mastering CSS3│ 113



PERSPECTIVE AND PERSPECTIVE-ORIGIN

We introduced the perspective() function earlier, but the perspective 
property takes the same values; the difference is that the property applies 
only to the children of the element that it’s used on, not the element itself.

The perspective-origin property changes the angle from which you 
view the element that’s being transformed. Like transform-origin, it 
accepts lengths, percentages or positional keywords, and the default 
position is the horizontal and vertical middle. The effect of changing the 
origin will be more pronounced the lower the perspective value is.

Conclusion
By necessity, we’ve flown through the intricacies of the 3D transformations 
syntax, but hopefully I’ve whetted your appetite to try it out yourself. With a 
certain amount of care for older browser versions, you can implement these 
properties in your own designs right now. If you don’t believe me, compare 
the list of “More adventures” on The Feed website that I built last year in a 
browser that supports 3D transforms and in one that doesn’t, and you’ll see 
what I mean.

Some of the concepts used in 3D transforms can be quite daunting, but 
experimentation will soon make them clear to you in practice, so get ahold 
of a browser that supports them and start making some cool stuff. But 
please, be responsible: not everything on the Web needs to be in three 
dimensions!

Smashing eBook #19│Mastering CSS3│ 114



How To Use CSS3 Pseudo-Classes
Richard Shepherd

CSS3 is a wonderful thing, but it’s easy to be bamboozled by the transforms 
and animations (many of which are vendor-specific) and forget about the 
nuts-and-bolts selectors that have also been added to the specification. A 
number of powerful new pseudo-selectors (16 are listed in the latest W3C 
spec) enable us to select elements based on a range of new criteria.

Smashing eBook #19│Mastering CSS3│ 115



Before we look at these new CSS3 pseudo-classes, let’s briefly delve into 
the dusty past of the Web and chart the journey of these often 
misunderstood selectors.

A Brief History Of Pseudo-Classes
When the CSS1 spec was completed back in 1996, a few pseudo-selectors 
were included, many of which you probably use almost every day. For 
example:

• :link

• :visited

• :hover

• :active

Each of these states can be applied to an element, usually <a>, after which 
comes the name of the pseudo-class. It’s amazing to think that these 
pseudo-classes arrived on the scene before HTML4 was published by the 
W3C a year later in December 1997.

CSS2 ARRIVES

Hot on the heels of CSS1 was CSS2, whose recommended spec was 
published just two years later in May 1998. Along with exciting things like 
positioning were new pseudo-classes: :first-child and :lang().

Smashing eBook #19│Mastering CSS3│ 116



:lang
There are a couple of ways to indicate the language of a document, and if 
you’re using HTML5, it’ll likely be by putting <html lang="en"> just after 
the doc type (specifying your local language, of course). You can now 
use :lang(en) to style elements on a page, which is useful when the 
language changes dynamically.

:first-child
You may have already used :first-child in your documents. It is often 
used to add or remove a top border on the first element in a list. Strange, 
then, that it wasn’t accompanied by :last-child; we had to wait until 
CSS3 was proposed before it could meet its brother.

WHY USE PSEUDO-CLASSES?

What makes pseudo-classes so useful is that they allow you to style 
content dynamically. In the <a> example above, we are able to describe 
how links are styled when the user interacts with them. As we’ll see, the new 
pseudo-classes allow us to dynamically style content based on its position in 
the document or its state.

Sixteen new pseudo-classes have been introduced as part of the W3C’s 
CSS Proposed Recommendation, and they are broken down into four 
groups: structural pseudo-classes, pseudo-classes for the states of UI 
elements, a target pseudo-class and a negation pseudo-class.

Smashing eBook #19│Mastering CSS3│ 117



The W3C is the home of CSS.

Let’s now run through the 16 new pseudo-selectors one at a time and see 
how each is used. I’ll use the same notation for naming classes that the W3C 
uses, where E is the element, n is a number and s is a selector.

SAMPLE CODE

For many of these new selectors, I’ll also refer to some sample code so that 
you can see what effect the CSS has. We’ll take a regular form and make it 
suitable for an iPhone using our new CSS3 pseudo-classes.

Note that we could arguably use ID and class selectors for much of this form, 
but it’s a great opportunity to take our new pseudo-classes out for a spin 
and demonstrate how you might use them in a real-world example. Here’s 
the HTML (which you can see in action on my website):

<form>
 <hgroup>

Smashing eBook #19│Mastering CSS3│ 118



 <h1>Awesome Widgets</h1>
 <h2>All the cool kids have got one :)</h2>
 </hgroup>
 <fieldset id="email">
 <legend>Where do we send your receipt?</legend>
 <label for="email">Email Address</label>
 <input type="email" name="email" placeholder="Email 
Address" />
 </fieldset>
 <fieldset id="details">
 <legend>Personal Details</legend>
 <select name="title" id="field_title">
  <option value="" selected="selected">Title</option>
  <option value="Mr">Mr</option>
  <option value="Mrs">Mrs</option>
  <option value="Miss">Miss</option>
 </select>
 <label for="firstname">First Name</label>
 <input name="firstname" placeholder="First Name" />
 <label for="initial">Initial</label>
 <input name="initial" placeholder="Initial" size="3" />
 <label for="surname">Surname</label>
 <input name="surname" placeholder="Surname" />
 </fieldset>
 <fieldset id="payment">
 <legend>Payment Details</legend>
 <label for="cardname">Name on card</label>
 <input name="cardname" placeholder="Name on card" />
 <label for"cardnumber">Card number</label>
 <input name="cardnumber" placeholder="Card number" />
 <select name="cardType" id="field_cardType">
  <option value="" selected="selected">Select Card Type</
option>
  <option value="1">Visa</option>
  <option value="2">American Express</option>
  <option value="3">MasterCard</option>
 </select>

Smashing eBook #19│Mastering CSS3│ 119



 <label for="cardExpiryMonth">Expiry Date</label>
 <select id="field_cardExpiryMonth" name="cardExpiryMonth">
  <option selected="selected" value="mm">MM</option>
   <option value="01">01</option>
   <option value="02">02</option>
   <option value="03">03</option>
   <option value="04">04</option>
   <option value="05">05</option>
   <option value="06">06</option>
   <option value="07">07</option>
   <option value="08">08</option>
   <option value="09">09</option>
   <option value="10">10</option>
   <option value="11">11</option>
   <option value="12">12</option>
 </select> /
 <select id="field_cardExpiryYear" name="cardExpiryYear">
   <option value="yyyy">YYYY</option>
    <option value="2011">11</option>
    <option value="2012">12</option>
    <option value="2013">13</option>
    <option value="2014">14</option>
    <option value="2015">15</option>
    <option value="2016">16</option>
    <option value="2017">17</option>
    <option value="2018">18</option>
    <option value="2019">19</option>
 </select>
 <label for"securitycode">Security code</label>
 <input name="securitycode" type="number" 
placeholder="Security code" size="3" />
 <p>Would you like Insurance?</p>
 <input type="radio" name="Insurance" id="insuranceYes" />
  <label for="insuranceYes">Yes Please!</label>
 <input type="radio" name="Insurance" id="insuranceNo" />
  <label for="insuranceNo">No thanks</label>
 </fieldset>

Smashing eBook #19│Mastering CSS3│ 120



 <fieldset id="submit">
 <button type="submit" name="Submit" disabled>Here I come!</
button>
 </fieldset>
</form>

Our form, before and after.

Smashing eBook #19│Mastering CSS3│ 121



1. Structural Pseudo-Classes
According to the W3C, structural pseudo-classes do the following:

… permit selection based on extra information that lies in the document 
tree but cannot be represented by other simple selectors or 
combinators.

What this means is that we have selectors that have been turbo-charged to 
dynamically select content based on its position in the document. So let’s 
start at the beginning of the document, with :root.

Level 3 selectors on the W3C website.

Smashing eBook #19│Mastering CSS3│ 122



E:ROOT

The :root pseudo-class selects the root element on the page. Ninety-nine 
times out of a hundred, this will be the <html> element. For example:

:root { background-color: #fcfcfc; }

It’s worth noting that you could style the <html> element instead, which is 
perhaps a little more descriptive:

html { background-color: #fcfcfc; }

iPhone Form Example
Let’s move over to our sample code and give the document some basic text 
and background styles:

:root {
color: #fff;
text-shadow: 0 -1px 0 rgba(0,0,0,0.8);
background: url(…/images/background.png) no-repeat #282826; }

E:NTH-CHILD(N)

The :nth-child() selector might require a bit of experimentation to fully 
understand. The easiest implementation is to use the keywords odd or 
even, which are useful when displaying data that consists of rows or 
columns. For example, we could use the following:

ul li:nth-child(odd) {
background-color: #666;
color: #fff; }

This would highlight every other row in an unordered list. You might find this 
technique extremely handy when using tables. For example:

table tr:nth-child(even) { … }

Smashing eBook #19│Mastering CSS3│ 123



The :nth-child selector can be much more specific and flexible, though. 
You could select only the third element from a list, like so:

li:nth-child(3) { … }

Note that n does not start at zero, as it might in an array. The first element 
is :nth-child(1), the second is :nth-child(2) and so on.

We can also use some simple algebra to make things even more exciting. 
Consider the following:

li:nth-child(2n) { … }

Whenever we use n in this way, it stands for all positive integers (until the 
document runs out of elements to select!). In this instance, it would select 
the following list items:

• Nothing (2 × 0)

• 2nd element (2 × 1)

• 4th element (2 × 2)

• 6th element (2 × 3)

• 8th element (2 × 4)

• etc.

This actually gives us the same thing as nth-child(even). So, let’s mix 
things up a bit:

li:nth-child(5n) { … }

This gives us:

• Nothing (5 × 0)

• 5th element (5 × 1)

Smashing eBook #19│Mastering CSS3│ 124



• 10th element (5 × 2)

• 15th element (5 × 3)

• 20th element (5 × 4)

• etc.

Perhaps this would be useful for long lists or tables, perhaps not. We can 
also add and subtract numbers in this equation:

li:nth-child(4n + 1) { … }

This gives us:

• 1st element ((4 × 0) + 1)

• 5th element ((4 × 1) + 1)

• 9th element ((4 × 2) + 1)

• 13th element ((4 × 3) + 1)

• 17th element ((4 × 4) + 1)

• etc.

SitePoint points out an interesting quirk here. If you set n as negative, you’ll 
be able to select the first x number of items like so:

li:nth-child(-n + x) { … }

Let’s say you want to select the first five items in a list. Here’s the CSS:

li:nth-child(-n + 5) { … }

This gives us:

• 5th element (-0 + 5)

• 4th element (-1 + 5)

Smashing eBook #19│Mastering CSS3│ 125



• 3rd element (-2 + 5)

• 2nd element (-3 + 5)

• 1st element (-4 + 5)

• Nothing (-5 + 5)

• Nothing (-6 + 5)

• etc.

If you’re listing data in order of popularity, then highlighting, say, the top 10 
entries might be useful.

WebDesign & Such has created a demo of zebra striping, which is a perfect 
example of how you might use nth-child in practice.

Zebra striping a table with CSS3.

Smashing eBook #19│Mastering CSS3│ 126



If none of your tables need styling, then you could do what Webvisionary 
Awards has done and use :nth-child to style alternating sections of its 
website. Here’s the CSS:

section > section:nth-child(even) {
background:rgba(255,255,255,.1)
url("../images/hr-damaged2.png") 0 bottom no-repeat;
}
section > section:nth-child(even) {
background:rgba(255,255,255,.1)
url("../images/hr-damaged2.png") 0 bottom no-repeat;
}

The effect is subtle on the website, but it adds a layer of detail that would be 
missed in older browsers.

The :nth-child selectors in action on Webvisionary Awards.

Smashing eBook #19│Mastering CSS3│ 127



iPhone Form Example
We could use :nth-child in a few places in our iPhone form example, but 
let’s focus on one. We want to hide the labels for the first three fieldsets 
from view and use the placeholder text instead. Here’s the CSS:

form:nth-child(-n+3) label { display: none; }

Here, we’re looking for the first three children of the <form> element (which 
are all fieldsets in our code) and then selecting the label. We then hide these 
labels with display: none;.

E:NTH-LAST-CHILD(N)

Not content with confusing us all with the :nth-child() pseudo-class, the 
clever folks over at the W3C have also given us :nth-last-child(n). It 
operates much like :nth-child() except in reverse, counting from the 
last item in the selection.

li:nth-last-child(1) { … }

The above will select the last element in a list, whereas the following will 
select the penultimate element:

li:nth-last-child(2) { … }

Of course, you could create other rules, like this one:

li:nth-last-child(2n+1) { … }

But you would more likely want to use the following to select the last five 
elements of a list (based on the logic discussed above):

li:nth-last-child(-n+5) { … }

Smashing eBook #19│Mastering CSS3│ 128



If this still doesn’t make much sense, Lea Verou has created a useful CSS3 
structural pseudo-class selector tester, which is definitely worth checking 
out.

CSS3 structural pseudo-class selector tester.

iPhone Form Example
We can use :nth-last-child in our example to add rounded corners to 
our input for the “Card number.” Here’s our CSS, which is overly specific but 
gives you an idea of how we can chain pseudo-selectors together:

fieldset:nth-last-child(2) input:nth-last-of-type(3) {
border-radius: 10px; }

Smashing eBook #19│Mastering CSS3│ 129



We first grab the penultimate fieldset and select the input that is third from 
last (in this case, our “Card number” input). We then add a border-
radius.

:NTH-OF-TYPE(N)

Now we’ll get even more specific and apply styles only to particular types of 
element. For example, let’s say you wanted to style the first paragraph in an 
article with a larger font. Here’s the CSS:

article p:nth-of-type(1) { font-size: 1.5em; }

Perhaps you want to align every other image in an article to the right, and 
the others to the left. We can use keywords to control this:

article img:nth-of-type(odd) { float: right; }
article img:nth-of-type(even) { float: left; }

As with :nth-child() and :nth-last-child(), you can use algebraic 
expressions:

article p:nth-of-type(2n+2) { … }
article p:nth-of-type(-n+1) { … }

It’s worth remembering that if you need to get this specific about targeting 
elements, then using descriptive class names instead might be more useful.

Simon Foster has created a beautiful infographic about his 45 RPM record 
collection, and he uses :nth-of-type to style some of the data. Here’s a 
snippet from the CSS, which assigns a different background to each genre 
type:

ul#genre li:nth-of-type(1) {
  width:32.9%;
 background:url(images/orangenoise.jpg);

Smashing eBook #19│Mastering CSS3│ 130



}
ul#genre li:nth-of-type(2) {
  width:15.2%;
 background:url(images/bluenoise.jpg);
}
ul#genre li:nth-of-type(3) {
  width:13.1%;
 background:url(images/greennoise.jpg);
}

And here’s what it looks like on his website:

The :nth-of-type selectors on “For the Record.”

Smashing eBook #19│Mastering CSS3│ 131



iPhone Form Example
Let’s say we want every second input element to have rounded corners on 
the bottom. We can achieve this with CSS:

input:nth-of-type(even) {
border-bottom-left-radius: 10px;
border-bottom-right-radius: 10px; }

In our example, we want to apply this only to the fieldset for payment, 
because the fieldset for personal details has three text inputs. We’ll also get 
a bit tricky and make sure that we don’t select any of the radio inputs. Here’s 
the final CSS:

#payment input:nth-of-type(even):not([type=radio]) {
border-bottom-left-radius: 10px;
border-bottom-right-radius: 10px;
border-bottom: 1px solid #999;
margin-bottom: 10px; }

We’ll explain :not later in this article.

:NTH-LAST-OF-TYPE(N)

Hopefully, by now you see where this is going: :nth-last-of-type() 
starts at the end of the selected elements and works backwards.

To select the last paragraph in an article, you would use this:

article p:nth-last-of-type(1) { … }

Smashing eBook #19│Mastering CSS3│ 132



You might want to choose this selector instead of :last-child if your 
articles don’t always end with paragraphs.

:FIRST-OF-TYPE AND :LAST-OF-TYPE

If :nth-of-type() and :nth-last-of-type() are too specific for your 
purposes, then you could use a couple of simplified selectors. For example, 
instead of this…

article p:nth-of-type(1) {
font-size: 1.5em; }
… we could just use this:
article p:first-of-type {
font-size: 1.5em; }

As you’d expect, :last-of-type works in exactly the same way but from 
the last element selected.

iPhone Form Example
We can use both :first-of-type and :last-of-type in our iPhone 
example, particularly when styling the rounded corners. Here’s the CSS:

fieldset input:first-of-type:not([type=radio]) {
border-top-left-radius: 10px;
border-top-right-radius: 10px; }

fieldset input:last-of-type:not([type=radio]) {
border-bottom-left-radius: 10px;
border-bottom-right-radius: 10px; }

Smashing eBook #19│Mastering CSS3│ 133



The first line of CSS adds a top rounded border to all :first-of-type 
inputs in a fieldset that aren’t radio buttons. The second line adds the 
bottom rounded border to the last input element in a fieldset.

:ONLY-OF-TYPE

There’s one more type selector to look at: :only-of-type(). This is 
useful for selecting elements that are the only one of their kind in their 
parent element.

For example, consider the difference between this CSS selector…

p {
font-size: 18px; }
… and this one:
p:only-of-type {
font-size: 18px; }

The first selector will style every paragraph element on the page. The 
second element will grab a paragraph that is the only paragraph in its 
parent.

This could be handy when you are styling content or data that has been 
dynamically outputted from a database and the query returns only one 
result.

Devsnippet has created a demo in which single images are styled differently 
from multiple images.

Smashing eBook #19│Mastering CSS3│ 134



Devsnippet’s demo for :only-of-type.

iPhone Form Example
In the case of our iPhone example, we can make sure that all inputs that are 
the only children of a fieldset have rounded corners on both the top and 
bottom. The CSS would be:

fieldset input:only-of-type {
border-radius: 10px; }

Smashing eBook #19│Mastering CSS3│ 135



:LAST-CHILD

It’s a little strange that :first-child was part of the CSS2 spec but that 
its partner in crime, :last-child, didn’t appear until CSS3. It takes no 
expressions or keywords here; it simply selects the last child of its parent 
element. For example:

li {
border-bottom: 1px solid #ccc; }

li:last-child {
border-bottom: none; }

This is a useful way to remove bottom borders from lists. You’ll see this 
technique quite often in WordPress widgets.

Rachel Andrew looks at :last-child and other CSS pseudo-selectors in 
her 24 Ways article “Cleaner Code With CSS3 Selectors.” Rachel shows us 
how to use this selector to create a well-formatted image gallery without 
additional classes.

Smashing eBook #19│Mastering CSS3│ 136



The CSS for :last-child in action, courtesy of Rachel Andrew.

:ONLY-CHILD

If an element is the only child of its parent, then you can select it 
with :only-child. Unlike with :only-of-type, it doesn’t matter what 
type of element it is. For example:

li:only-child { … }

We could use this to select list elements that are the only list elements in 
their <ol> or <ul> parent.

Smashing eBook #19│Mastering CSS3│ 137



:EMPTY

Finally, in structural pseudo-classes, we have :empty. Not surprisingly, this 
selects only elements that have no children and no content. Again, this 
might be useful when dealing with dynamic content outputted from a 
database.

#results:empty {
background-color: #fcc; }

You might use the above to draw the user’s attention to an empty search 
results section.

2. !e Target Pseudo-Class

:TARGET

This is one of my favourite pseudo-classes, because it allows us to style 
elements on the page based on the URL. If the URL has an identifier (that 
follows an #), then the :target pseudo-class will style the element that 
shares the ID with the identifier. Take a URL that looks like this:

http://www.example.com/css3-pseudo-selectors#summary

The section with the id summary can now be styled like so:

:target {
background-color: #fcc; }

This is a great way to style elements on pages that have been linked to from 
external content. You could also use it with internal anchors to highlight 
content that users have skipped to.

Smashing eBook #19│Mastering CSS3│ 138



Perhaps the most impressive use of :target I’ve seen is Corey Mwamba’s 
Scrolling Site of Green. Corey uses some creative CSS3 and the :target 
pseudo-class to create animated tabbed navigation. The demo contains 
some clever use of CSS3, illustrating how pseudo-classes are often best 
used in combination with other CSS selectors.

Corey’s Scrolling Site of Green.

There’s also an interesting example over at Web Designer Notebook. In 
it, :target and Webkit animations are used to highlight blocks of text in 
target divs. Chris Coyier also creates a :target-based tabbing system at 
CSS-Tricks.

Smashing eBook #19│Mastering CSS3│ 139



iPhone Form Example
As you’ll see on my demo page, I’ve added a navigation bar at the top that 
skips down to different sections of the form. We can highlight any section 
the user jumps to with the following CSS:

:target {
background-color: rgba(255,255,255,0.3);

-webkit-border-radius:
10px;}

3. !e UI Element States Pseudo-Classes

:ENABLED AND :DISABLED

Together with :checked, :enabled and :disabled make up the 
three pseudo-classes for UI element states. That is, they allow you to style 
elements (usually form elements) based on their state. A state could be set 
by the user (as with :checked) or by the developer (as with :enabled 
and :disabled). For example, we could use the following:

input:enabled {
background-color: #dfd; }
input:disabled {
background-color: #fdd; }

This is a great way to give feedback on what users can and cannot fill in. 
You’ll often see this dynamic feature enhanced with JavaScript.

iPhone Form Example
To illustrate :disabled in practice, I have disabled the form’s “Submit” 
button in the HTML and added this line of CSS:

:disabled {

Smashing eBook #19│Mastering CSS3│ 140



color: #600; }

The button text is now red!

:CHECKED

The third pseudo-class here is :checked, which deals with the state of an 
element such as a checkbox or radio button. Again, this is very useful for 
giving feedback on what users have selected. For example:

input[type=radio]:checked {
font-weight: bold; }

iPhone Form Example
As a flourish, we can use CSS to highlight the text next to each radio button 
once the button has been pressed:

input:checked + label {
text-shadow: 0 0 6px #fff; }

We first select any input that has been checked, and then we look for the 
very next <span> element that contains our text. Highlighting the text with a 
simple text-shadow is an effective way to provide user feedback.

4. Negation Pseudo-Class

:NOT

This is another of my favorites, because it selects everything except the 
element you specify. For example:

:not(footer) { … }

Smashing eBook #19│Mastering CSS3│ 141



This selects everything on the page that is not a footer element. When used 
with form inputs, they allow us to get a little sneakier:

input:not([type=submit]) { … }
input:not(disabled) { … }

The first line selects every form input that’s not a “Submit” button, which is 
useful for styling forms. The second selects all input elements that are not 
enabled; again useful for giving feedback on how to fill in a form.

iPhone User Example
You’ve already seen the :not selector in action. It’s particularly powerful 
when chained with other CSS3 pseudo-selectors. Let’s take a closer look at 
one example:

fieldset input:not([type=radio]) {
margin: 0;
width: 290px;
font-size: 18px;
border-radius: 0;
border-bottom: 0;
border-color: #999;
padding: 8px 10px;}

Here we are selecting all inputs inside fieldset elements that are not radio 
buttons. This is incredibly useful when styling forms because you will often 
want to style text inputs different from select boxes, radio buttons and 
“Submit” buttons.

Smashing eBook #19│Mastering CSS3│ 142



What’s Old Is New Again
Let’s go back to the beginning of our story and the humble a:link. HTML5 
arrived on the scene recently and brought with it an exciting change to the 
<a> element that gives the CSS3 pseudo-selector an additive effect.

An <a> element can now be wrapped around block-level elements, turning 
whole sections of your page into links (as long as those sections don’t 
contain other interactive elements). Whereas JavaScript was once popular 
for making entire <div> elements clickable, you can now do so by 
wrapping sections in <a> tags, like so:

<a href="http://www.smashing-magazine.com">
<div id="advert">
<hgroup>
<h1>Jackson’s Widgets</h1>
<h2>The finest widgets in Kentucky</h2>
</hgroup>
<p>Buy Jackson’s Widgets today,
and be sure of a trouble-free life for you,
your widget and your machinery.
Trusted and sold since 1896.</p>
</div>
</a>

The implication for CSS pseudo-selectors is that you can now style a <div> 
based on whether it is being hovered over (a:hover) or is active 
(a:active), like so:

a:hover #advert {
background-color: #f7f7f7; }

Anything that decreases JavaScript and increases semantic code has to be 
good!

Smashing eBook #19│Mastering CSS3│ 143



Cross-Browser Compatibility
You had to ask, didn’t you! Unbelievably, Internet Explorer 8 (and earlier) 
doesn’t support any of these selectors, whereas the latest versions of 
Chrome, Opera, Safari and Firefox all do. Before your blood boils, consider 
the following solutions.

INTERNET EXPLORER 9

Unless you’ve been living under a rock for the last week, you’ll have heard 
that Microsoft unleashed its latest browser on an unsuspecting public. The 
good thing is, it’s actually quite good. While I don’t expect people who are 
reading this article to change their browsing habits, it’s worth remembering 
that the majority of the world uses IE; and thanks to Windows Update and a 
global marketing campaign, we can hope to see IE9 as the dominant 
Windows browser in the near future. That’s good for Web designers, and it’s 
good for pseudo-selectors. But what about IE8 and its ancestors?

Smashing eBook #19│Mastering CSS3│ 144



Internet Explorer 9 is here.

JAVASCRIPT

Our old friend JavaScript comes to the rescue. I particularly like Selectivizr 
by Keith Clark. Keith has put together a lovely script that, in combination with 
your JavaScript library of choice, adds CSS3 pseudo-class selector 
functionality for earlier versions of IE. Be warned that some libraries fare 
better than others: if you’re using MooTools with Selectivizr, then all the 
pseudo-classes will be available, but if you’re relying on jQuery to do the 
heavy lifting, then a number of the selectors won’t work at all.

Smashing eBook #19│Mastering CSS3│ 145



Selectivizr.

Keith recently released a jQuery plug-in that extends jQuery to include 
support for the following CSS3 pseudo-class selectors:

• :first-of-type
• :last-of-type
• :only-of-type
• :nth-of-type
• :nth-last-of-type

Smashing eBook #19│Mastering CSS3│ 146



It’s also worth looking at the ubiquitous ie7.js script (and its successors) by 
Dean Edwards. This script solves a number of IE-related problems, including 
CSS3 pseudo-selectors.

SO, SHOULD WE START USING CSS3 PSEUDO-SELECTORS TODAY?

I guess the answer to that question depends on how you view JavaScript. 
It’s true that pseudo-selectors can be completely replaced with classes and 
IDs; but it’s also true that, when styling complex layouts, pseudo-selectors 
are both incredibly useful and the natural next step for your CSS. If you find 
that they improve the readability of your CSS and reduce the need for (non-
semantic) classes in your HTML, then it I’d definitely recommend embracing 
them today.

You could use two selectors and fall back on a class name, but that would 
just duplicate work. It also means that you wouldn’t need the pseudo-
classes in the first place. But if you did choose to go down this path, the 
code might look something like this:

li:nth-of-type(3),
li.third { … }

Smashing eBook #19│Mastering CSS3│ 147



This method is not as flexible as using pseudo-classes because you have to 
keep updating the HTML and CSS when the page content changes.

If a lot of your users don’t have JavaScript enabled, that puts you in a bit of a 
bind. Many Web designers argue that functionality (i.e. JavaScript) is 
different from layout (i.e. CSS), and so you should not rely on JavaScript to 
make pseudo-selectors work in IE8 and earlier.

While I agree with the principle, in practice I believe that providing the best 
possible experience to 99% of your users is better than accounting for the 
remaining 1% (or however big your non-JavaScript base may be).

Follow your website’s analytics, and be prepared to make decisions that 
improve your skills as a Web designer and, more importantly, provide the 
best experience possible to the majority of users.

Final !oughts
It’s hard not to be depressed by IE8’s complete lack of support for pseudo-
classes. Arguably, having the browser calculate and recalculate page styles 
in this fashion will have implications for rendering speed; but because all 
other major browsers now support these selectors, it’s frustrating that most 
of our users can’t benefit from them without a JavaScript hack.

But as Professor Farnsworth says, “Good news everyone!” Breaking on the 
horizon is the dawn of Internet Explorer 9, and Microsoft has made sure that 
its new browser supports each and every one of the selectors discussed in 
this article.

Smashing eBook #19│Mastering CSS3│ 148



CSS3 pseudo-selectors won’t likely take up large chunks of your style 
sheets. They are specific yet dynamic and are more likely, at least initially, to 
add finishing touches to a page than to set an overall style. Perhaps you 
want to drop the bottom border in the last item of a list, or give visual 
feedback to users as they fill in a form. This is all possible with CSS3, and as 
usage becomes more mainstream, I expect these will become a regular part 
of the Web designer’s toolbox.

If you’ve seen any interesting or exciting uses of these selectors out there in 
the field, do let us know in the comments below.

OTHER RESOURCES

You may be interested in the following articles and related resources:

• The Official CSS3 Selectors Proposed Recommendation
Everything you need to know, from the folks in charge.

• Wikipedia’s Guide to Cascading Style Sheets
A good background read, and the bibliography is a great resource.

• How nth-child Works
A comprehensive guide from the ever-reliable Chris Coyier.

• Internet Explorer 9
If you haven’t yet played around with Redmond’s latest offering, you’re 
in for a pleasant surprise.

Smashing eBook #19│Mastering CSS3│ 149



CSS3 Flexible Box Layout Explained
Richard Shepherd

The flexible box layout module — or “flexbox,” to use its popular nickname 
— is an interesting part of the W3C Working Draft. The flexbox specification 
is still a draft and subject to change, so keep your eyes on the W3C, but it is 
part of a new arsenal of properties that will revolutionize how we lay out 
pages. At least it will be when cross-browser support catches up.

In the meantime, we can experiment with flexbox and even use it on 
production websites where fallbacks will still render the page correctly. It 
may be a little while until we consider it as mainstream as, say, border-
radius, but our job is to investigate new technologies and use them where 
possible. That said, when it comes to something as fundamental as page 
layout, we need to tread carefully.

!e Display Property
So what is flexbox, and why was it created? First, let’s look at how we 
currently lay out pages and some of the problems with that model.

Until last year, most of us were using tables to lay out our pages. Okay, 
maybe not last year! But I suspect that many of you reading this have been 
guilty of relying on tables at some point in your career. At the same time, it 
actually made a lot of sense. And let’s face it: it worked… to a point. 
However, we all then faced the reality that tables were semantically dubious 
and incredibly inflexible. And through the haze of this mark-up hangover, we 
caught a glimpse of the future: the CSS box model. Hurray!

Smashing eBook #19│Mastering CSS3│ 150



The CSS box model allowed us to tell the browser how to display a piece of 
content, and in particular how to display it as a box. We floated left and right, 
we tried to understand what inline-block meant, and we read countless 
articles about clearfix, before just copying and pasting the clearfix 
hack-du-jour into our CSS.

For those of us testing our websites back to IE6, we had to grapple with 
hasLayout and triggering it with the following or some similar fix:

* html #element {
height: 1%;
}

The box model worked, and in most cases it worked well. But as the Web 
entered its teenage years, it demanded more complex ways of laying out 
content and — thanks to a certain Mr. Ethan Marcotte — of responding to the 
size of the browser and/or device.

PERCENTAGE + PADDING + BORDER = TROUBLE

Here’s another problem with the current box model: absolute values for 
padding, margin and border all affect the width of a box. Take the following:

#element {
width: 50%;
border 1px solid #000;
padding: 0 5px;
}

Smashing eBook #19│Mastering CSS3│ 151



This will not give us a box that is 50% of its parent. It will actually render an 
element that is 50% of the parent’s width plus 12 pixels (2-pixel border + 10-
pixel padding). You could set the padding as a percentage value (although 
not for input elements in Firefox!), but adding percentage values of widths to 
the pixel values of borders can cause mathematical problems.

There are two ways to fix this problem. The first is to use the new CSS3 
box-sizing property, and setting it to border-box:

#element {
box-sizing: border-box;
width: 50%;
border 1px solid #000;
padding: 0 5px;
}

This new CSS3 panacea effectively tells the browser to render the element 
at the specified width, including the border width and padding.

The second way to fix this problem is to use flexbox.

MANY PROBLEMS, MANY SOLUTIONS

The W3C responded with a suite of answers: the flexible box model, 
columns, templates, positioned floats and the grid. Adobe added regions to 
the mix, but they are not yet supported by any browser.

The display property already has no less than a staggering 16 values: 
inline, block, list-item, inline-block, table, inline-table, 
table-row-group, table-header-group, table-footer-group, 
table-row, table-column-group, table-column, table-cell, 
table-caption, none and inherit.

And now we can add a 17th: box.

Smashing eBook #19│Mastering CSS3│ 152



Living In A Box
Let’s take a look at flexbox, which brings with it a brand new value for the 
display property (box) and no less than 8 new properties. Here’s how the 
W3C defines the new module:

In this new box model, the children of a box are laid out either 
horizontally or vertically, and unused space can be assigned to a 
particular child or distributed among the children by assignment of flex 
to the children that should expand. Nesting of these boxes (horizontal 
inside vertical, or vertical inside horizontal) can be used to build layouts 
in two dimensions.

Sounds exciting! The Working Draft expands on this a little:

Flexbox… lacks many of the more complex text or document-formatting 
properties that can be used in block layout, such as “float” and 
“columns,” but in return it gains more simple and powerful tools for 
aligning its contents in ways that Web apps and complex Web pages 
often need.

Now this is beginning to sound interesting. The flexbox model picks up 
where the box model leaves off, and the W3C reveals its motivation by 
noting that “Web apps and complex Web pages” need a better layout 
model. Here’s a list of the new flexbox properties:

• box-orient,
• box-pack,
• box-align,
• box-flex,

Smashing eBook #19│Mastering CSS3│ 153



• box-flex-group,
• box-ordinal-group,
• box-direction,
• box-lines.

For the sake of brevity, I will use only the official spec’s properties and 
values, but do remember to add the vendor prefixes to your work. (See the 
section on “Vendor Prefixes and Cross-Browser Support” below.)

You might also want to check out Prefixr from Jeffrey Way, which can help 
generate some of the CSS for you. However, I found that it incorrectly 
generated the display: box property, so check all of its code.

EVERYTHING WILL CHANGE

If you take the time to read or even browse the latest Working Draft (from 22 
March 2011), you’ll notice a lot of red ink, and with good reason. This spec 
has issues and is still changing; we are in unchartered waters.

It’s worth noting that the syntax used in this article, and by all current 
browsers, is already out of date. The Working Draft has undergone changes 
to much of the syntax used in the flexbox model. For example:

display: box;

This will become:

display: flexbox;

Other changes include some properties being split (box-flex will become 
flex-grow and flex-shrink), while others will be combined (box-
orient and box-direction will become flex-direction). Indeed, 
anything that starts box- will be changed to flex-. So, keep your eyes on 
the spec and on browser implementations. (CanIUse helps, but it doesn’t 
cover all of the properties.)

Smashing eBook #19│Mastering CSS3│ 154

http://prefixr.com/
http://prefixr.com/


PARAPPA THE WRAPPER

Using flexbox often requires an extra div or two, because the parent of any 
flexbox element needs to have display set to box. Before, you could get 
away with the following:

<div style="float: left; width: 250px;"> Content here </div>
<div style="float: right; width: 250px;"> Content here </div>
Now with flexbox, you’ll need:
<div style="display: box">
  <div style="width: 250px"> Content here </div>
  <div style="width: 250px"> Content here </div>
</div>

Many of you have already turned away, insulted by this extra mark-up that is 
purely for presentation. That’s understandable. But here’s the thing: once 
you master the CSS, this extra containing div becomes a small price to pay. 
Indeed, you’ll often already have a containing element (not necessarily a div) 
to add display: box to, so there won’t be a trade-off at all.

On a broader note, sometimes you need presentational mark-up. It’s just the 
way it goes. I’ve found that, particularly when working on cross-browser 
support for a page, I have to add presentational mark-up for browsers such 
as IE6. I’m not saying to contract “div-itis,” but because we all use HTML5 
elements in our mark-up, we find that sections often need div containers. 
That’s fine, as long as it’s kept to a minimum.

With this in mind, let’s get busy with some code. I’ve put together a demo 
page, and you can download all of the source files.

Smashing eBook #19│Mastering CSS3│ 155



Over the next few paragraphs, we’ll use the new flexbox model to create a 
basic home page for a blog. You might want to launch a latest-generation 
browser, though, because we’re now coding at the cutting edge. And it’s an 
exciting place to be.

Smashing eBook #19│Mastering CSS3│ 156



BOX-FLEX

Let’s start with the basics: box-flex. Without box-flex, very little can be 
achieved. Simply put, it tells the browser how to resize an element when the 
element is too big or small for its parent.

Consider the following classic problem. You have a container with three 
children that you want to position side by side. In other words, you float 
them left. If the total width of these boxes is wider than that of the parent — 
perhaps because of padding, margin or a border — then you need to either 
specify exact widths in pixels (which is not flexible) or work in percentages 
(and the sometimes mind-bending calculations that come with them!).

Here’s the problem we have on our Fruit Blog, with three 320-pixel-wide 
asides (plus padding and margin) inside a 920-pixel-wide container:

Smashing eBook #19│Mastering CSS3│ 157



As you can see, the content is wider than the parent. However, if we set set 
the parent to display: box and each of these asides to box-flex: 1, 
then the browser takes care of the math and renders the following:

So, what exactly has happened here?

The box-flex property refers to how the browser will treat the width of the 
box — or, more specifically, the unused space (even if that space is negative 
— i.e. even if the rendered boxes are too big for the container) — after the 
box has rendered. The value (1 in our example) is the ratio. So, with each 
aside set to a ratio of 1, each box is scaled in exactly the same way.

In the first instance, each aside was 320 pixels + 20 pixels of padding on the 
left and right. This gave us a total width of 360 pixels; and for three asides, 
the width was 1080 pixels. This is 160 pixels wider than the parent container.

Telling the browser that each box is flexible (with box-flex) will make it 
shrink the width of each box — i.e. it will not change the padding. This 
calculation is a fairly easy one:

160 pixels ÷ 3 asides = 53.333 pixels to be taken off each aside.
320 pixels – 53.333 = 266.667 pixels

Smashing eBook #19│Mastering CSS3│ 158



And, if we look in Chrome Developer tools, we will see this is exactly how 
wide the box now is (rounded up to the nearest decimal):

The same would be true if each aside had a width of 100 pixels. The browser 
would expand each element until it filled the unused space, which again 
would result in each aside having a width of 266.667 pixels.

This is invaluable for flexible layouts, Because it means that your padding, 
margin and border values will always be honored; the browser will simply 
change the width of the elements until they fit the parent. If the parent 
changes in size, so will the flexible boxes within it.

Of course, you can set box-flex to a different number on each element, 
thus creating different ratios. Let’s say you have three elements side by side, 
each 100 pixels wide, with 20 pixels padding, inside a 920-pixel container. It 
looks something like this:

Now, let’s set the box-flex ratios:

Smashing eBook #19│Mastering CSS3│ 159



.box1 { box-flex: 2; }

.box2 { box-flex: 1; }

.box3 { box-flex: 1; }

Here’s what it looks like:

What just happened?!

Well, each aside started off as 140-pixels wide (100 pixels + 40 pixels 
padding), or 420 pixels in total. This means that 500 pixels were left to fill 
once we’d made them flexible boxes.

However, rather than split the 500 pixels three ways, we told the browser to 
assign the first aside with a box-flex of 2. This would grow it by 2 pixels 
for every 1 pixel that the other two boxes grow, until the parent is full.

Perhaps the best way to think of this is that our ratio is 2:1:1. So, the first 
element will take up 2/4 of the unused space, while the other two elements 
will take up 1/4 of the unused space (2/4 + 1/4 + 1/4 = 1).

2/4 of 500 pixels is 250, and 1/4 is 125 pixels. The final widths, therefore, 
end up as:

.box1 = 350px (100px + 250px) + 40px padding

.box2 = 225px (100px + 125px) + 40px padding

.box3 = 225px (100px + 125px) + 40px padding

Smashing eBook #19│Mastering CSS3│ 160



Add all of these values up and you reach the magic number of 920 pixels, 
the width of our parent.

An important distinction to make is that the ratio refers to how the additional 
pixels (or unused space) are calculated, not the widths of the boxes 
themselves. This is why the widths are 350:225:225 pixels, and not 
460:230:230 pixels.

The wonderful thing about the flexbox model is that you don’t have to 
remember — or even particularly understand — much of the math. While the 
Working Draft goes into detail on the calculation and distribution of free 
space, you can work safe in the knowledge that the browser will take care of 
this for you.

ANIMATING FLEXIBLE BOXES

A simple and elegant effect is already at your fingertips. By making the li 
elements in a navigation bar flexible, and specifying their width on :hover, 
you can create a nice effect whereby the highlighted li element expands 
and all the other elements shrink. Here’s the CSS for that:

nav ul {
display: box;
width: 880px;
}
nav ul li {
padding: 2px 5px;
box-flex: 1;
-webkit-transition: width 0.5s ease-out;
min-width: 100px;
}
nav ul li:hover {
width: 200px;
}

Smashing eBook #19│Mastering CSS3│ 161



You’ll spot a min-width on the li element, which is used to fix a display 
bug in Chrome.

EQUAL-HEIGHT COLUMNS: THE HAPPY ACCIDENT!

As we’ll see, all flexbox elements inherit a default value of box-align: 
stretch. This means they will all stretch to fill their container.

For example, two flexbox columns in a parent with display: box will 
always be the same height. This has been the subject of CSS and JavaScript 
hacks for years now.

There are a number of practical implementations of this fortunate outcome, 
not the least of which is that sidebars can be made the same height as the 
main content. Now, a border-left on a right-hand sidebar will stretch the 
full length of the content. Happy days!

BOX-ORIENT AND BOX-DIRECTION

The box-orient property defines how boxes align within their parent. The 
default state is horizontal or, more specifically, inline-axis, which is 
horizontal and left-to-right in most Western cultures. Likewise, vertical is 
the same as block-axis. This will make sense if you think about how the 
browser lays out inline and block elements.

Smashing eBook #19│Mastering CSS3│ 162



You can change the box-orient value to vertical to make boxes stack 
on top of each other. This is what we’ll do with the featured articles on our 
fruit blog.

Here is what our articles look like with box-orient set to its default 
setting:

Ouch! As you can see, the articles are stacking next to each other and so 
run off the side of the page. It also means that they sit on top of the sidebar. 
But by quickly setting the parent div to box-orient: vertical, the 
result is instant:

Smashing eBook #19│Mastering CSS3│ 163



A related property is box-direction, which specifies the direction in 
which the boxes are displayed. The default value is normal, which means 
the boxes will display as they appear in the code. But if you change this 
value to reverse, it will reverse the order, and so the last element in the 
code will appear first, and the first last.

While box-orient and box-direction are essential parts of the model, 
they will not likely appear in the final specification, because they are being 
merged into the flex-direction property, which will take the 
following values: lr, rl, tb, bt, inline, inline-reverse, block and 
block-reverse. Most of these are self-explanatory, but as yet they don’t 
work in any browser.

BOX-ORDINAL-GROUP

Control over the order in which boxes are displayed does not stop at 
normal and reverse. You can specify the exact order in which each box is 
placed.

The value of box-ordinal-group is set as a positive integer. The lower 
the number (1 being the lowest), the higher the layout priority. So, an 
element with box-ordinal-group: 1 will be rendered before one with 
box-ordinal-group: 2. If elements share the same box-ordinal-
group, then they will be rendered in the order that they appear in the 
HTML.

Let’s apply this to a classic blog scenario: the sticky post (i.e. content that 
you want to keep at the top of the page). Now we can tag sticky posts with a 
box-ordinal-group value of 1 and all other posts with a box-ordinal-
group of 2 or lower. It might look something like this:

article {

Smashing eBook #19│Mastering CSS3│ 164



box-ordinal-group: 2;
}
article.sticky {
box-ordinal-group: 1;
}

So, any article with class="sticky" is moved to the top of the list, 
without the need for any front-end or back-end jiggering. That’s pretty 
impressive and incredibly useful.

We’ve used this code in our example to stick a recent blog post to the top of 
the home page:

Smashing eBook #19│Mastering CSS3│ 165



BOX-PACK AND BOX-ALIGN

The box-pack and box-align properties help us position boxes on the 
page.

The default value for box-align is stretch, and this is what we’ve been 
using implicitly so far. The stretch value stretches the box to fit the 
container (together with any other siblings that are flexible boxes), and this is 
the behavior we’ve seen so far. But we can also set box-align to center 
and, depending on the box-orient value, the element will be centered 
either vertically or horizontally.

For example, if a parent inherits the default box-align value of 
horizontal (inline-axis), then any element with box-align set to 
center will be centered vertically.

We can use this in our blog example to vertically center the search box in 
the header. Here’s the mark-up:

<header>
  <form id="search">
    <label for="searchterm">Search</label>
    <input type="search" placeholder="What’s your favourite 
fruit…" name="searchterm" />
    <button type="submit">Search!</button>
  </form>
</header>
And to vertically center the search box, we need just one line 
of CSS:
header {
display: box; box-align: center;
}
header #search {
display: box; box-flex: 1;
}

Smashing eBook #19│Mastering CSS3│ 166



The height of #search has not been set and so depends on the element’s 
content. But no matter what the height of #search, it will always be 
vertically centered within the header. No more CSS hacks for you!

The other three properties of box-align are start, end and baseline.

When box-orient is set to horizontal (inline-axis), an element 
with box-align set to start will appear on the left, and one with box-
align set to end will appear on the right. Likewise, when box-orient is 
set to vertical (block-axis), an element with box-align set to 
start will appear at the top, and one with box-align set to end will move 
to the bottom. However, box-direction: reverse will flip all of these 
rules on their head, so be warned!

Finally, we have baseline, which is best explained by the specification:

Align all flexbox items so that their baselines line up, then distribute free 
space above and below the content. This only has an effect on flexbox 
items with a horizontal baseline in a horizontal flexbox, or flexbox items 
with a vertical baseline in a vertical flexbox. Otherwise, alignment for 

Smashing eBook #19│Mastering CSS3│ 167



that flexbox item proceeds as if flex-align: auto had been 
specified.

Another property helps us with alignment: box-pack. This enables us to 
align elements on the axis that is perpendicular to the axis they are laid out 
on. So, as in the search-bar example, we have vertically aligned objects 
whose parent have box-orient set to horizontal.

But what if we want to horizontally center a box that is already horizontally 
positioned? For this tricky task, we need box-pack.

If you look at the navigation on our fruit blog, you’ll see that it’s only 880 
pixels wide, and so it naturally starts at the left of the container.

We can reposition this ul by applying box-pack to its parent. If we apply 
box-pack: center to the navigation element, then the navigation moves 
nicely to the center of the container.

Smashing eBook #19│Mastering CSS3│ 168



This behaves much like margin: 0 auto. But with the margin trick, you 
must specify an explicit width for the element. Also, we can do more than 
just center the navigation with box-pack. There are three other values: 
start, end and justify. The start and end values do what they do for 
box-align. But justify is slightly different.

The justify value acts the same as start if there is only one element. 
But if there is more than one element, then it does the following:

• It adds no additional space in front of the first element,

• It adds no additional space after the last element,

• It divides the remaining space between each element evenly.

BOX-FLEX-GROUP AND BOX-LINES

The final two properties have limited and/or no support in browsers, but they 
are worth mentioning for the sake of thoroughness.

Perhaps the least helpful is box-flex-group, which allows you to specify 
the priority in which boxes are resized. The lower the value (as a positive 
integer), the higher the priority. But I have yet to see an implementation of 
this that is either useful or functional. If you know different, please say so in 
the comments.

On the other hand, box-lines is a bit more practical, if still a little 
experimental. By default, box-lines is set to single, which means that all 
of your boxes will be forced onto one row of the layout (or onto one column, 
depending on the box-orient value). But if you change it to box-lines: 
multiple whenever a box is wider or taller than its parent, then any 
subsequent boxes will be moved to a new row or column.

Smashing eBook #19│Mastering CSS3│ 169



Vendor Prefixes and Cross-Browser Support
It will come as no surprise to you that Internet Explorer does not (yet) 
support the flexbox model. Here’s how CanIUse sees the current browser 
landscape for flexbox:

The good news is that Internet Explorer 10 is coming to the party. Download 
the platform preview, and then check out some interesting examples.

Also, we need to add a bunch of vendor prefixes to guarantee the widest 
possible support among other “modern” browsers. In a perfect world, we 
could rely on the following:

#parent {
display: box;
}
#child {

Smashing eBook #19│Mastering CSS3│ 170



flex-box: 1;
}

But in the real world, we need to be more explicit:

#parent {
display: -webkit-box;
display: -moz-box;
display: -o-box;
display: box;
}
#child {
-webkit-flex-box: 1;
-moz-flex-box: 1;
-o-flex-box: 1;
flex-box: 1;
}

HELPER CLASSES

A shortcut to all of these vendor prefixes — and any page that relies on the 
flexbox model will have many of them — is to use helper classes. I’ve 
included them in the source code that accompanies this article. Here’s an 
example:

.box {
display: -webkit-box;
display: -moz-box;
display: -o-box;
display: box;
}
.flex1 {
-webkit-flex-box: 1;
-moz-flex-box: 1;
-o-flex-box: 1;
flex-box: 1;

Smashing eBook #19│Mastering CSS3│ 171



}
.flex2 {
-webkit-flex-box: 2;
-moz-flex-box: 2;
-o-flex-box: 2;
flex-box: 2;
}

This allows us to use this simple HTML:

<div class='box'>
  <div class='flex2' id="main">
   <!-- Content here -->
 </div>
  <div class="flex1" id="side”>
    <!-- Content here -->
  </div>
</div>

Using non-semantic helper classes is considered bad practice by many; but 
with so many vendor prefixes, the shortcut can probably be forgiven. You 
might also consider using a “mixin” with Sass or Less, which will do the 
same job. This is something that Twitter sanctions in its preboot.less file.

FLEXIE.JS

For those of you who want to start experimenting with flexbox now but are 
worried about IE support, a JavaScript polyfill is available to help you out.

Flexie.js, by Richard Herrera, is a plug-and-play file that you simply need to 
include in your HTML (download it on GitHub). It will then search through 
your CSS files and make the necessary adjustments for IE — no small feat 
given that it is remapping much of the layout mark-up on the page.

Smashing eBook #19│Mastering CSS3│ 172



Smashing eBook #19│Mastering CSS3│ 173



A WORD ON FIREFOX

The flexbox model was, at least originally, based on a syntax that Mozilla 
used in its products. That syntax, called XUL, is a mark-up language 
designed for user interfaces.

The irony here is that Firefox is still catching up, and its rendering of some 
flexbox properties can be buggy. Below are some issues to watch out for, 
which future releases of Firefox will fix. Credit here must go to the uber-
smart Peter Gasston and Oli Studholme, giants on whose shoulders I stand.

• Flexbox ignores overflow: hidden and expands the flexbox child 
when the content is larger than the child’s width.

• The setting display: box is treated as display: inline-box if 
there is no width.

• The outline on flexbox children is padded as if by a transparent border 
of the same width.

• The setting box-align: justify does not work in Firefox.

• If you set box-flex to 0, Firefox forces the element to act like it’s 
using the quirks-mode box model.

Smashing eBook #19│Mastering CSS3│ 174



Summary
The flexbox model is another exciting development in the CSS3 
specification, but the technology is still very much cutting-edge. With buggy 
support in Firefox and no support in Internet Explorer until version 10 moves 
beyond the platform preview, it is perhaps of limited use in the mainstream.

Nevertheless, the spec is still a working document. So, by experimenting 
with these new techniques now, you can actively contribute to its 
development.

It’s hard to recommend the flexbox model for production websites, but 
envelopes need pushing, and it might well be the perfect way to lay out a 
new experimental website or idea that you’ve been working on.

Offering a range of new features that help us break free of the float, the 
flexbox model is another step forward for the layout of modern Web pages 
and applications. It will be interesting to see how the specification develops 
and what other delights for laying out pages await the Web design 
community in the near future.

Smashing eBook #19│Mastering CSS3│ 175



!e Guide To CSS Animation: Principles 
And Examples
Tom Waterhouse

With CSS animation now supported in both Firefox and Webkit browsers, 
there is no better time to give it a try. Regardless of its technical form, 
whether traditional, computer-generated 3-D, Flash or CSS, animation 
always follows the same basic principles. In this article, we will take our first 
steps with CSS animation and consider the main guidelines for creating 
animation with CSS. We’ll be working through an example, building up the 
animation using the principles of traditional animation. Finally, we’ll see 
some real-world usages.

Smashing eBook #19│Mastering CSS3│ 176



CSS Animation Properties
Before diving into the details, let’s set up the basic CSS:

Animation is a new CSS property that allows for animation of most HTML 
elements (such as div, h1 and span) without JavaScript or Flash. At the 
moment, it’s supported in Webkit browsers, including Safari 4+, Safari for iOS 
(iOS 2+), Chrome 1+ and, more recently, Firefox 5. Unsupported browsers 
will simply ignore your animation code, so ensure that your page doesn’t 
rely on it!

Because the technology is still relatively new, prefixes for the browser 
vendors are required. So far, the syntax is exactly the same for each 
browser, with only a prefix change required. In the code examples below, 
we use the -webkit syntax.

All you need to get some CSS animation happening is to attach an animation 
to an element in the CSS:

/* This is the animation code. */
@-webkit-keyframes example {
   from { transform: scale(2.0); }
   to   { transform: scale(1.0); }
}
/* This is the element that we apply the animation to. */
div {
   -webkit-animation-name: example;
   -webkit-animation-duration: 1s;
   -webkit-animation-timing-function: ease; /* ease is the 
default */
   -webkit-animation-delay: 1s;             /* 0 is the 
default */
   -webkit-animation-iteration-count: 2;    /* 1 is the 
default */

Smashing eBook #19│Mastering CSS3│ 177



   -webkit-animation-direction: alternate;  /* normal is the 
default */
}

First, we have the animation code itself. This can appear anywhere in the 
CSS, as long as the element that you’re animating can find the relevant 
animation-name.

When assigning the animation to your element, you can also use the 
shorthand:

div {
-webkit-animation: example 1s ease 1s 2 alternate;
}

We can cut this down further by not entering all of the values. Without a 
value specified, the browser will fall back to the default.

Those are the basics. We’ll work through more code in the following 
section.

Applying Principles of Traditional Animation
Disney — the masters of traditional animation, in my opinion — developed the 
12 principles of traditional animation early on and documented them in its 
famous book The Illusion of Life. These basic principles can be applied to all 
manner of animation, and you needn’t be an expert in animation to follow 
along. We’ll be working through an example of CSS animation that uses the 
12 principles, turning a basic animation into a more believable illusion.

These may just be bouncing balls, but you can see a world of difference 
between the two versions.

Smashing eBook #19│Mastering CSS3│ 178



This example demonstrates the features of CSS animation. In the code 
below, we use empty divs to show how it works; this isn’t the most semantic 
way to code, as we all know, but the point is to show how simple it is to 
bring a page to life in a way that we haven’t been able to do before in the 
browser.

SQUASH AND STRETCH

Smashing eBook #19│Mastering CSS3│ 179



The crude bouncing ball is a great demonstration of this first point. If the ball 
falls at a high velocity and hits the floor, you’ll see it squash down from the 
force and then stretch back out as it bounces up.

At a basic level, this should give our animation a sense of weight and 
flexibility. If we dropped a bowling ball, we wouldn’t expect it to flex at all — it 
might just damage the floor.

We can apply this squash and stretch effect through a CSS3 property, 
transform:

@-webkit-keyframes example {
   0% { -webkit-transform: scaleY(1.0); }
   50% { -webkit-transform: scaleY(1.2); }
   100% { -webkit-transform: scaleY(1.0); }
}

This will scale the object lengthwise (on the y axis, up and down) to 1.2 times 
the original size, and then revert to the original size.

We’re also using more complex timing for this animation. You can use from 
and to for basic animations. But you can also specify many actions for your 
animation using percentages, as shown here.

That covers the squashing. Now we need to move the object using 
translate. We can combine transforms together:

50% {
-webkit-transform: translateY(-300px) scaleY(1.2);
}

Smashing eBook #19│Mastering CSS3│ 180



The translate property allows us to manipulate the object without 
changing any of its base properties (such as position, width or height), which 
makes it ideal for CSS animation. This particular translate property 
makes it look like the ball is bouncing off the floor at the mid-point of the 
animation.

Yes, it still looks rubbish, but this small adjustment is the first step in making 
this animation more believable.

ANTICIPATION

Anticipation adds suspense, or a sense of power, before the main action. 
For example, the bend in your legs before you jump helps viewers anticipate 
what will come next. In the case of our bouncing ball, simply adding a 
shadow beforehand suggests that something is falling from above.

We’ve added another div for the shadow, so that we can animate it 
separate from the ball.

To create anticipation here, we keep the ball from dropping into the scene 
immediately. We do this simply by adjusting the percentage timings so that 
there is no movement between the start point and the first action.

@-webkit-keyframes example {
   0% { -webkit-transform: translateY(-300px) scaleY(1.2); }
   35% { -webkit-transform: translateY(-300px) 
scaleY(1.2); } /* Same position as 0% */
   65% { -webkit-transform: translateY(0px) 
scaleY(1.2); }    /* Starts moving after 35% to this position 
*/
   67% { -webkit-transform: translateY(10px) scaleY(0.8); }
   85% { -webkit-transform: translateY(-100px) scaleY(1.2); }
   100% { -webkit-transform: translateY(0px); }
}

Smashing eBook #19│Mastering CSS3│ 181



At the 35% point of the animation, the ball is in the same location, 
positioned off the stage, not moving. Then, between 35% and 65%, it 
suddenly moves onto the stage, and the rest of the animation follows.

You can also use animation-delay to create anticipation:

div {
-webkit-animation-delay: 1s;
}

However, this could have an undesired effect. The animation-delay 
property simply ignores any animation code until the specified time. So, if 
your animation starts in a position different from the element that you are 
animating, then the object will appear to suddenly jump as soon as the 
delayed animation starts.

This property works best for looping animations that begin and end in the 
same location.

Smashing eBook #19│Mastering CSS3│ 182



STAGING

Try to give a stage to the scene; put the animation in context. Thinking back 
to Disney films, what would they be without the fantastic background 
artwork? That’s half of the magic!

The stage is also key to focusing attention. Much like on a theater stage, 
lighting will be cast on the most important area. The stage should add to the 
illusion. With our bouncing ball, I’ve added a simple background to focus on 
where the ball will land. Now the viewer knows that the action will take place 
in the center, and the scene is no longer lost in snow.

Smashing eBook #19│Mastering CSS3│ 183



STRAIGHT-AHEAD VS. POSE TO POSE

In traditional animation, this is a choice in how to construct your animation. 
The straight-ahead option is to draw out every frame in the sequence. The 
pose-to-pose option is to create a few keyframes throughout the sequence, 
and then fill in the gaps later. Filling in these gaps is known as “in-
betweening,” or “tweening,” a familiar term for those used to animating in 
Flash.

With CSS animation, we typically use the latter, pose to pose. That is, we’ll 
add keyframes of action, and then the browser will “tween” the intermediate 
frames automatically. However, we can learn from the straight-ahead 
technique, too. The browser can do only so many effects; sometimes, you 
have to do it the hard way and put in more animation hard-graft to get the 
desired effect.

FOLLOW-THROUGH AND OVERLAPPING

Also known as physics! Follow-through and overlapping are more commonly 
used in character animation for body movement, such as to show arms 
swaying as the character drops them or long hair falling. Think of someone 
with a big stomach turning quickly: their body will turn first, and their bulging 
gut will follow shortly after.

For us, this means getting the physics right when the ball drops. In the 
demonstrations above, the ball drops unnaturally, as if beyond the control of 
gravity. We want the ball to drop and then bounce. However, this is better 
achieved through the next principle.

Smashing eBook #19│Mastering CSS3│ 184



SLOW IN AND OUT

This has to do with speeding up and slowing down. Imagine a car that is 
speeding along and has to come to a stop. If it were to stop instantly, it 
wouldn’t be believable. We know that cars take time to slow down, so we 
would have to animate the car braking and slowly coming to a stop.

This is also relevant to showing the effect of gravity. Imagine a child on a 
swing. As they approach the highest point, they will slow down. As they 
come back down and gain speed, their fastest point will be at the bottom of 
the arc. Then they will rise up on the opposite side, and the action repeats.

Smashing eBook #19│Mastering CSS3│ 185



Back to our example, by adjusting the in and out speeds, we can make the 
ball much more believable (finally).

When the ball hits the floor, the impact will make it bounce back up instantly. 
As it reaches its highest point, it will slow down. Now it looks like the ball is 
really dropping.

In CSS, we can control this with the animation-timing-function 
property:

-webkit-animation-timing-function: ease-out;

This property takes the following values:

• ease-inSlow at the beginning, and then speeds up.

• ease-outFast at the beginning, and then slows to a stop.

• ease-in-outStarts slow, speeds up in the middle, and then slows to a 
stop.

• linearMoves at an even speed from start to finish.

Smashing eBook #19│Mastering CSS3│ 186



You can also use the bezier-curve function to create your own easing 
speeds.

ARCS

Similar to the follow-through principle of physics, arcs follow the basic 
principle of “what goes up must come down.” Arcs are useful in thinking 
about the trajectory of an object.

Let’s throw the ball in from the left of the stage. A convincing animation 
would predict the arc along which the ball will fall; and in our example it will 
have to predict the next arc along which the ball will fall when it bounces.

Smashing eBook #19│Mastering CSS3│ 187



This animation can be a bit more fiddly to adjust in CSS. We want to animate 
the ball going up and down and side to side simultaneously. So, we want our 
ball to move in smoothly from the left, while continuing the bouncing 
animation that we’ve been working on. Rather than attempt to capture both 
actions as one animation, we’ll do two separate animations, which is easiest. 
For this demonstration, we’ll wrap our ball in another div and animate it 
separately.

The HTML:

<div class="ball-arc">
   <div class="ball"></div>
</div>
And the CSS:
.ball-arc {
-webkit-animation: ball-x 2.5s cubic-bezier(0, 0, 0.35, 1);
}
   /* cubic-bezier here is to adjust the animation-timing 
speed.
   This example makes the ball take longer to slow down. */
@-webkit-keyframes ball-x {
   0% { -webkit-transform: translateX(-275px); }
   100% { -webkit-transform: translateX(0px); }
}

Here, we have one animation to move the ball sideways (ball-x) and 
another animation to bounce the ball (ball-y). The only downside to this 
method is that if you want something really complex, you could end up with 
a code soup with poor semantics!

Smashing eBook #19│Mastering CSS3│ 188



SECONDARY ACTION

A secondary action is a subtlety that makes the animation much more real. It 
addresses the details. For example, if we had someone with long hair 
walking, the primary action would be the walking, and the secondary action 
would be the bounce of the hair, or perhaps the ruffling of the clothes in the 
wind.

In our example, it’s much simpler. By applying more detail to the ball, we 
make the secondary action the spinning of the ball. This will give the illusion 
that the ball is being thrown in.

Rather than add another div for this animation, we can be more specific by 
adding it to the new img element that we’re using to give the ball texture.

.ball img {
-webkit-animation: spin 2.5s;
}

@-webkit-keyframes spin {
   0% { -webkit-transform: rotate(-180deg); }
   100% { -webkit-transform: rotate(360deg); }
}

Smashing eBook #19│Mastering CSS3│ 189



TIMING

This is simply the timing of your animation. The better the timing of the 
animation, the more realistic it will look.

Our ball is a perfect example of this. The current speed is about right for a 
ball this light. If it were a bowling ball, we would expect it to drop much more 
quickly. Whereas, if the animation were any slower, then it would look like 
we were playing tennis in space. The correct timing basically helps your 
animation look realistic.

You can easily adjust this with the animation-duration property, and 
you can adjust the individual timings of your animation using percentage 
values.

Smashing eBook #19│Mastering CSS3│ 190



EXAGGERATION

Cartoons are known for exaggeration, or impossible physics. A cartoon 
character can contort into any shape and still manage to spring back to 
normal. In most cases, though, exaggeration is used for emphasis, to bring 
to life an action that would otherwise look flat in animation.

Nevertheless, use exaggeration modestly. Disney had a rule to base its 
animations on reality but push it slightly further. Imagine a character running 
into a wall; its body would squash into the wall more than expected, to 
emphasize the force of impact.

We’re using exaggeration in combination with squash and stretch to make it 
really obvious when the ball hits the floor. I’ve also added a subtle wobble to 
the animation. Finally, we also stretch the ball in and out as it bounces up 
and down to emphasize the speed.

Just as when we added one animation onto another, here we’ll add another 
div, which will wobble in sync with the ball hitting the floor:

@-webkit-keyframes wobble {
0%, 24%, 54%, 74%, 86%, 96%, 100% {
   -webkit-transform: scaleX(1.0);
/* Make the ball a normal size at these points */
}
25%, 55%, 75% {
   -webkit-transform: scaleX(1.3) scaleY(0.8) 
translateY(10px);
/* Points hitting the floor: squash effect */
}
30%, 60%, 80% {
   -webkit-transform: scaleX(0.8) scaleY(1.2);
/* Wobble inwards after hitting the floor */
}
75%, 87% {

Smashing eBook #19│Mastering CSS3│ 191



   -webkit-transform: scaleX(1.2);
/* Subtler squash for the last few bounces */
}
97% -webkit-transform: scaleX(1.1);
/* Even subtler squash for last bounce */
}
}

The code looks more complex than it is. It’s simple trial and error. Keep 
trying until you get the right effect!

SOLID DRAWING AND APPEAL

I have nothing more to teach you… at least not in code. These final two 
animation principles cannot be shown in code. They are skills you will have 
to perfect in order to make truly amazing animations.

When Disney started production on Snow White, it had its animators go back 
to life drawing classes and learn the human form again. This attention to 
detail is evident in the film, which goes to show that good animation requires 
solid drawing skills and sound knowledge of the form you are animating.

Most CSS animation will likely not be as complex as intricate figure 
animations, but the basic principle holds true. Whether a door is opening to 
reveal content or a “contact us” envelope is being sealed and delivered, the 
animation should be believable, not robotic… unless you’re animating a 
machine.

The appeal, or charisma, of each character will be unique. But as Disney has 
always shown, anything can have character: a teapot, a tree, even spoons. 
But with CSS, consider how the overall animation will contribute to the 
design and make the overall experience more satisfying. We don’t want to 
make clippy animations here.

Smashing eBook #19│Mastering CSS3│ 192



Go Forth And Animate!
CSS animation is a great new feature. As with every new CSS feature, it will 
be overused and misused at first. There is even the slight danger that we’ll 
see a return of those long-winded Flash-style animated splash pages. 
Although I have faith in the Web community not to do this.

CSS animation can be used to really bring a website to life. While the code 
for our bouncing ball may not be the most semantic, it hopefully shows how 
simple it can be to bring almost anything on the page to life with CSS.

It can bring much-needed interaction to your elements (sans Flash!); it can 
add excitement to the page; and in combination with JavaScript, it can even 
be an alternative way to animate for games. By taking in the 12 principles 
above and working away at your animation, you can make your websites 
more convincing, enticing and exciting, leading to a better experience 
overall.

CSS ANIMATION TOOLS

While knowing the CSS itself is great, plenty of tools are popping up that will 
help you animate. The 12 principles apply regardless, but if you’re worried 
about the code, these great tools let you try out CSS animation without 
getting too technical.

• Sencha Animator

• Adobe Edge

• Tumult Hype (Mac only)

Smashing eBook #19│Mastering CSS3│ 193

http://www.sencha.com/products/animator/
http://www.sencha.com/products/animator/
http://labs.adobe.com/technologies/edge/
http://labs.adobe.com/technologies/edge/
http://tumultco.com/hype/
http://tumultco.com/hype/


CSS ANIMATION IN THE WILD

Finally, to get you excited about what is possible, here are some great 
examples of CSS animation being used on live websites:

• CSS Spider-Man animation, by Anthony Calzadilla

• CSS Tricks (animated typography person), by Mircea Piturca

• Walking man, by Andrew Hoyer

Smashing eBook #19│Mastering CSS3│ 194

http://www.optimum7.com/css3-man/
http://www.optimum7.com/css3-man/
http://www.anthonycalzadilla.com/
http://www.anthonycalzadilla.com/
https://developer.mozilla.org/en-US/demos/detail/css-tricks
https://developer.mozilla.org/en-US/demos/detail/css-tricks
https://developer.mozilla.org/en-US/demos/profile/Mircea%20Piturca
https://developer.mozilla.org/en-US/demos/profile/Mircea%20Piturca
http://andrew-hoyer.com/experiments/walking/
http://andrew-hoyer.com/experiments/walking/
http://andrew-hoyer.com/
http://andrew-hoyer.com/


Beercamp: An Experiment With CSS 3D
Tom Giannattasio

I recently had the pleasure of organizing this year’s 2012 Beercamp website. 
If you’re unfamiliar, Beercamp is a party for designers and developers. It’s 
also a playground for front-end experimentation. Each year we abandon 
browser support and throw a “Pshaw” in the face of semantics so that we 
can play with some emerging features of modern browsers.

This year’s experiment: a 3D pop-up book á la Dr. Seuss. If you’ve not seen 
it, hop on over and take a look. The website was a test to see how far SVG 
and CSS 3D transforms could be pushed. I learned a lot in the process and 
wanted to share some of the techniques that I found helpful when working 
in 3D space.

Smashing eBook #19│Mastering CSS3│ 195

http://2012.beercamp.com/
http://2012.beercamp.com/


Before we jump in, please note that explaining everything about the website 
without boring you to death would be damn near impossible. For your sake 
and mine, I’ll provide just brief takeaways. As you skim through the code 
snippets, be aware that jQuery is being used and that a lot of code has been 
removed for simplicity (including browser prefixes).

Finally, please remember that this is an experiment! It will not work in all 
browsers. It does not degrade gracefully, and the markup is less than poetic. 
Put your convictions on hold for a moment and let’s have some fun.

“Beercamp 2012: A Tale of International Mischief”

Smashing eBook #19│Mastering CSS3│ 196



Takeaway #1: Exploring 3D Space Is Fun
Before I started building the Beercamp website, I did some “research” into 
what makes pop-up books so much fun. As I flipped through the paper-
crafted version of Dr. Seuss’ Oh, the Places You’ll Go, I found myself 
inspecting each page from multiple angles. Seeing how things looked from 
different perspectives was fun, and interacting with the environment was 
engaging.

The inspiration for Beercamp: Dr. Seuss’ “Oh, the Places You’ll Go.”

Smashing eBook #19│Mastering CSS3│ 197



I wanted to create that same engagement in my digital version with intuitive 
and unobtrusive controls. Thus, the scene rotates based on the mouse’s 
coordinates, allowing the user to move the book around without much effort. 
Achieving this was pretty easy:

6. Set up a listener.

This is for the mousemove event.

$document.mousemove(rotateScene);

7. Calculate the rotation.

I wanted the book to rotate between -15 and 15 degrees, based on where 
the mouse is located along the x axis. This can be calculated using the 
following:

rotationY = -15 + (30 * e.pageX / $body.width());

8. Apply the rotation.

$scene.css('transform': 'rotateY(' + rotationY + 'deg)');

Pretty simple, right? The only problem is that our friends on iPhones and 
iPads don’t have mouse coordinates. They do, however, have a gyroscope. 
Rotating a phone is very similar to rotating a book, so adjusting the scene 
based on the device’s orientation made for an intuitive and delightful 
interaction. Setting this up was similar but slightly more involved.

9. Set up a listener.

window.addEventListener('deviceorientation', rotateScene, 
false);

Smashing eBook #19│Mastering CSS3│ 198



10.Determine the orientation.

Before we can calculate the rotation, we need to know whether the device is 
in landscape or portrait mode. This can be determined by evaluating 
window.orientation:

• Landscape
Math.abs(window.orientation) == 90

• Portrait
window.orientation == 0

Determine the device’s orientation by evaluating window.orientation.

Smashing eBook #19│Mastering CSS3│ 199



11. Calculate the rotation.

Now that we have the orientation, we can pull in the appropriate values from 
the gyroscope. If the device is in landscape mode, we’ll tap the beta 
property. Otherwise, we’ll use gamma.

var theta = (Math.abs(window.orientation) == 90) ? e.beta : 
e.gamma;
rotationY = 0 + (15 * (theta / -45));

The deviceorientation event enables us to pull alpha, beta and gamma rotation 
values. Note that these values are relative to the current orientation of the 
device. The image above shows the axes of a phone held perpendicular to the 
ground in portrait mode.

12.Apply the rotation.

$scene.css('transform': 'rotateY(' + rotationY + 'deg)');

Smashing eBook #19│Mastering CSS3│ 200



Takeaway #2: Depth-Sorting Is Notoriously Buggy
A number of browsers support 3D transforms, but few do so elegantly. Apart 
from general efficiency issues, the biggest hindrance is improper depth-
sorting.

Depth-sorting is required when two planes intersect in three-dimensional 
space. The rendering engine must determine which plane (or, more 
specifically, which areas of the plane) should be rendered and which should 
be clipped.

Depth-sorting varies across browsers.

Smashing eBook #19│Mastering CSS3│ 201



Unfortunately, each browser implements depth-sorting differently and, 
therefore, has its own issues. The best we can do to combat the glitchy pop-
through of underlying elements is to keep planes away from each other.

The Beercamp website involves numerous plane intersections. Initially, I had 
all of the pages rotating around the same point in 3D space (0, 0, 0). This 
meant that just about every plane in the book was fighting to be on top. To 
counter this, the pages needed to be positioned as if they were next to each 
other along the spine of an actual book. I did this by rotating the pages 
around an arc, with the open page at the pinnacle.

Rotating pages around an arc helps to prevent clipping.

function updateDrag(e) {
    …
    // operate on each spread

Smashing eBook #19│Mastering CSS3│ 202



   $('.spreads li').each(function(i) {
        // calculate the angle increment
        var ANGLE_PER_PAGE = 20;
        // determine which slot this page should be turned to
        var offsetIndex = per < 0 ? 5 + curPageIndex - i : 5 + 
curPageIndex - i - 2;
        // calculate the angle on the arc this page should be 
turned to
        var offsetAngle = per < 0 ? offsetIndex - per - 1 : 
offsetIndex - per + 1;
        // calculate the x coordinate based on the offsetAngle
        var tarX = 5 * Math.cos(degToRad(offsetAngle * 
ANGLE_PER_PAGE + 10));
        // calculate the z coordinate based on the offsetAngle
        var tarZ = 5 * Math.sin(degToRad(offsetAngle * 
ANGLE_PER_PAGE + 10));
        // position the page
        $(this).css('transform', 'translateX(' + 
tarX.toFixed(3) + 'px) translateZ(' + tarZ.toFixed(3) + 
'px)');
    });
}

Smashing eBook #19│Mastering CSS3│ 203



This technique helped to clear up most of the depth-sorting issues, but not 
all of them. Further optimization really relies on the browser vendors. Safari 
seems to have things worked out on both desktop and mobile. Chrome 
Stable struggles a bit, but the latest Canary works wonderfully. Firefox does 
a fine job but suffers from slow frame rates. It’s a tough battle to win right 
now.

Takeaway #3: Vector Space Is Tricky But Useful
Building the pop-ups was by far the most difficult aspect of the project, but 
also the most satisfying. Other pop-up books have been built on the Web, 
but I’m unaware of any that use realistic pop-up mechanics. This is with 
good reason — achieving it is deceptively complex.

The magic of programming pop-up mechanics lies in the calculation of 
vector space. A vector is essentially a line. Knowing the lengths and 
directions of lines enables us to perform operations on them. Of particular 
use when building pop-ups is the vector cross product, which is the line that 
runs perpendicular to two other lines in 3D space.

The cross product is important because it determines the upward rotation of 
each pop-up piece. I’ll spare you the headache of play-by-play calculations 
(you can view the math below if you’re really interested). Instead, let’s try a 
visual representation.

Smashing eBook #19│Mastering CSS3│ 204



The vector cross product in action.

We start by determining two points where each pop-up piece touches the 
page within 3D space. Those points are used to define a vector for each 
pop-up piece (the red lines). Using those vectors, we can calculate their 
cross product (the blue line), which is essentially the line at which a physical 
pop-up folds in half. Rotating each piece up to the cross product then gives 
us perfectly aligned pop-ups!

This is not exactly easy math in my opinion, but it is extremely useful. If 
you’re interested in playing with vectors, I strongly recommend Sylvester. It 
really simplifies vector math.

Smashing eBook #19│Mastering CSS3│ 205

http://sylvester.jcoglan.com/
http://sylvester.jcoglan.com/


function setFold() {
    var points = [];
    // origin
    points[0] = [0, 0, 0];
    var adj = Math.sqrt(Math.pow(POPUP_WIDTH, 2) - 
Math.pow(POPUP_WIDTH * Math.sin(degToRad(-15)), 2));
    // left piece: bottom outside
    points[1] = [-adj * Math.cos(degToRad(-180 * fold)), adj * 
Math.sin(degToRad(-180 * fold)), POPUP_WIDTH * 
Math.sin(degToRad(-15))];
    // right piece: bottom outside
    points[2] = [adj * Math.cos(degToRad(-180 * 0)), 
POPUP_WIDTH * Math.sin(degToRad(-180 * 0)), POPUP_WIDTH * 
Math.sin(degToRad(-15))];
    // left piece: top inside
    points[3] = [-POPUP_WIDTH * Math.cos(degToRad((-180 * 
fold) - 90)), POPUP_WIDTH * Math.sin(degToRad((-180 * fold) - 
90)), 0];
    var len = Math.sqrt(Math.pow(points[1][0], 2) + 
Math.pow(points[1][1], 2) + Math.pow(points[1][2], 2));
    // normalize the vectors
    var normV1 = $V([points[1][0] / len, points[1][1] / len, 
points[1][2] / len]);
    var normV2 = $V([points[2][0] / len, points[2][1] / len, 
points[2][2] / len]);
    var normV3 = $V([points[3][0] / len, points[3][1] / len, 
points[3][2] / len]);
    // calculate the cross vector
    var cross = normV1.cross(normV2);
    // calculate the cross vector's angle from vector 3
    var crossAngle = -radToDeg(cross.angleFrom(normV3)) - 90;
    // transform the shape
    graphic.css('transform', 'translateY(' + depth + 'px) 
rotateZ(' + zRot + 'deg) rotateX(' + crossAngle + 'deg)');
}

Smashing eBook #19│Mastering CSS3│ 206



Takeaway #4: SVG Is Totally Tubular
I know, I know: you’ve heard the case for SVG before. Well, you’re going to 
hear it again. SVG is an incredible technology that works really well in 3D 
space. All of the illustrations on the Beercamp website were done in 
Illustrator and exported to SVG. This provided numerous benefits.

BENEFIT 1: SIZE

Because the pop-up pieces required large areas of transparency, the file-
size savings of SVG were enormous. PNG equivalents would have been 200 
to 300% larger than the uncompressed SVGs. However, we can reduce file 
size even more by exporting illustrations as SVGZ.

SVGZ is a compressed version of SVG that is incredibly small. In fact, the 
SVGZ files for Beercamp are up to 900% smaller than their PNG equivalents! 
Implementing them, though, requires some server configuration. This can be 
done easily with an .htaccess file:

AddType image/svg+xml svg svgz
AddEncoding gzip svgz

Smashing eBook #19│Mastering CSS3│ 207



BENEFIT 2: FLEXIBILITY

The flexibility of SVG is perhaps its most highlighted benefit. The graphics 
on the Beercamp website are scaled in 3D space to fill the browser window. 
There are also hotspots on each page that allow the user to zoom in for 
more details. Because everything is handled with SVG, the illustrations 
remain crisp and clean regardless of how they’re manipulated in 3D space.

SVG files are inherently responsive.

Smashing eBook #19│Mastering CSS3│ 208



BENEFIT 3: SELF-CONTAINED ANIMATION

All of the SVGs on the Beercamp website are implemented as background 
images. This helps to keep the markup clean and allows images to be 
reused in multiple locations, such as with the pop-up pieces. However, this 
means we lose DOM access to each of the nodes. So, what if we need some 
animation on the background SVGs?

SVG allows us to define animations within the file itself. All of the pop-up 
images in the final Beercamp website are static, but an earlier version 
featured animated beer bubbles. To increase performance in some of the 
less-capable browsers, these were taken out. However, the SVG animations 
ran very smoothly in WebKit.

SVG animation gets less hype than its CSS cousin, but it’s just as capable. 
Within an element, we can add an animate node to specify typical animation 
settings: properties, values, start time, duration, repeat count, etc. Below is 
an excerpt from one of the Beercamp bubbles.

<circle fill="#fff" opacity=".4" clip-path="url(#right-mug-
clip)" cx="896" cy="381" r="5">
    <animate attributeType="XML" attributeName="cx" from="890" 
to="881" begin="7s" dur="5s" repeatCount="indefinite" />
    <animate attributeType="XML" attributeName="cy" from="381" 
to="100" begin="7s" dur="5s" repeatCount="indefinite" />
</circle>

Smashing eBook #19│Mastering CSS3│ 209



Takeaway #5: Experimentation Is Messy But 
Important
Now that the practical tidbits are out of the way, I’d like to say a word about 
experimentation.

It’s easy to get boxed in by the reality of developing websites that are 
responsive, cross-platform, cross-browser, gracefully degrading, 
semantically perfect, progressively enhanced, _______, _______ and 
_______ (space to fill in upcoming buzzwords). These techniques are useful 
on production websites to ensure reach and consistency, but they can also 
limit our creativity.

I’ll be the first to admit it: the Beercamp website is buggy. Browser support is 
limited, and usability could be improved. However, the website is an 
experiment. It’s meant to explore what’s possible, not satisfy what’s 
practical.

A dogma is emerging in our industry — and the buzzwords above are its 
doctrine. Experimentation enables us to think beyond that dogma. It’s a 
wonderful exercise that indulges our curiosity, polishes our talent and 
ultimately advances our industry. If you’re not experimenting in some 
capacity, you should be.

Smashing eBook #19│Mastering CSS3│ 210



!e State of CSS 3D
CSS 3D has yet to hit a tipping point. Browsers simply don’t support it well 
enough, but there is promise on the horizon. Mobile Safari, with its hardware 
acceleration, renders 3D transforms extremely fast and with very little depth-
sorting issues. It’s only a matter of time until other manufacturers release 
stable implementations. It’ll be interesting to see how CSS 3D techniques 
hold up against other emerging technologies, such as WebGL.

Remember Flash? Me neither.

Smashing eBook #19│Mastering CSS3│ 211



Using CSS3: Older Browsers And Common 
Considerations
Dave Sparks

With the arrival of IE9, Microsoft has signaled its intent to work more with 
standards-based technologies. With IE still the single most popular browser 
and in many ways the browser for the uninitiated, this is hopefully the long 
awaited start of us Web craftsmen embracing the idea of using CSS3 as 
freely as we do CSS 2.1. However, with IE9 not being supported on versions 
of Windows before Vista and a lot of businesses still running XP and 
reluctant (or unable) to upgrade, it might take a while until a vast majority of 
our users will see the new technologies put to practice.

While plenty of people out there are using CSS3, many aren’t so keen or 
don’t know where to start. This article will first look at the ideas behind 
CSS3, and then consider some good working practices for older browsers 
and some new common issues.

A Helpful Analogy
The best analogy to explain CSS3 that I’ve heard relates to the world of film. 
Filmmakers can’t guarantee what platform their viewers will see their films 
on. Some will watch them at the cinema, some will watch them at home, and 
some will watch them on portable devices. Even among these few viewing 
options, there is still a massive potential for differences: IMAX, DVD, Blu-ray, 
surround sound — somebody may even opt for VHS!

Smashing eBook #19│Mastering CSS3│ 212



So, does that mean you shouldn’t take advantage of all the great stuff that 
Blu-ray allows with sound and video just because someone somewhere will 
not watch the film on a Blu-ray player? Of course not. You make the 
experience as good as you can make it, and then people will get an 
experience that is suitable to what they’re viewing the movie on.

A lot about CSS3 can be compared to 3-D technology. They are both 
leading-edge technologies that add a lot to the experience. But making a 
film without using 3-D technology is still perfectly acceptable, and 
sometimes even necessary. Likewise, you don’t need to splash CSS3 
gradients everywhere and use every font face you can find. But if some 
really do improve the website, then why not?

However, simply equating CSS3 to 3-D misses the point. In many cases, 
CSS3 simply allows us to do the things that we’ve been doing for years, but 
without all the hassle.

To Gracefully Degrade or Progressively Enhance?
In film, you create the best film you can make and then tailor the product to 
the viewing platform. Sound familiar? If you have dabbled in or even taken a 
peek at CSS3, it should.

There are two schools of thought with CSS3 usage, and it would be safe to 
say that the fundamental principle of both is to maintain a website’s usability 
for those whose browsers do not support CSS3 capabilities, while providing 
CSS3 enhancements for those whose browsers do. In other words, make 
sure the film still looks good even without the 3-D specs. In many ways, the 
schools of thought are similar, and regardless of which you adopt, you will 
face many of the same concerns and issues, only from different angles.

Smashing eBook #19│Mastering CSS3│ 213



GRACEFUL DEGRADATION

With graceful degradation, you code for the best browsers and ensure that 
as the various layers of CSS3 are peeled away on older browsers, those 
users still get a usable (even if not necessarily as pleasing an) experience.

The approach is similar (although not identical) to using an IE6-only style 
sheet, whereby you serve a certain set of styles to most users, while serving 
alternate styles to users of IE6 and lower. Normally, the IE6 version of a 
website removes or replaces styling properties that don’t work in IE6, along 
with fixes for any layout quirks. Graceful degradation differs in that it makes 
use of the natural fallbacks in the browser itself, and fixes are determined by 
browser capabilities rather than specific browser versions. Also, graceful 
degradation does not normally require an entirely different set of styles. The 
result, though, is that the majority of users get the normal view, and then 
tweaks are applied for people who have yet to discover a better browser.

Aggressive graceful degradation is at the heart of Andy Clarke’s recent 
book, Hardboiled Web Design, and the accompanying website makes great 
use of graceful degradation. There are plenty of other examples, including 
Do Websites Need to Look Exactly the Same in Every Browser.com, which 
was built to showcase the technique, and Virgin Atlantic’s vtravelled blog, 
designed by John O’Nolan, which shows some great subtle fallbacks that 
most users wouldn’t even notice. And if you’re a WordPress user, why not 
compare your admin dashboard in IE to it in another browser?

PROGRESSIVE ENHANCEMENT

Progressive enhancement follows the process in reverse: that is, building for 
lower-support browsers and then using CSS3 to enhance the experience of 
those with more capable browsers. This used to be done, and still is by 
some, with separate enhancement style sheets.

Smashing eBook #19│Mastering CSS3│ 214



As a starting point, most people will code for a sensible standards-based 
browser, then add some code to support browsers such as IE7 and 8, and 
then possibly thrown in some fixes for IE6 for good measure, and then step 
back and think, “How can I improve this with CSS3?” From there, they would 
add properties such as rounded corners, gradients, @font-face text 
replacement and so on.

As browser makers add support, progressive enhancement appears to be 
taking a back seat to graceful degradation. But progressive enhancement is 
a very good approach for getting started with CSS3 properties and learning 
how they work.

Examples of the technique include the personal websites of Sam Brown and 
Elliot Jay Stocks, which both feature enrichment-type style sheets, Elliot has 
spoken on the matter, and the slides from his 2009 Web Directions South 
talk, “Stop Worrying and Get on With It (Progressive Enhancement and 
Intentional Degradation),” make for good reading.

Smashing eBook #19│Mastering CSS3│ 215

http://sam.brown.tc/
http://sam.brown.tc/
http://elliotjaystocks.com/
http://elliotjaystocks.com/
http://www.webdirections.org/resources/elliot-jay-stocks-progressive-enhancement/
http://www.webdirections.org/resources/elliot-jay-stocks-progressive-enhancement/
http://www.webdirections.org/resources/elliot-jay-stocks-progressive-enhancement/
http://www.webdirections.org/resources/elliot-jay-stocks-progressive-enhancement/


Elliot Jay Stock’s presentation ‘Stop Worrying and Get on With It (Progressive 
Enhancement and Intentional Degradation)’

Comparing the two, graceful degradation can be considered a top-down 
approach, starting with browsers most capable of utilizing CSS3 and working 
down to older browsers that lack support.

Progressive enhancement works the other way, bottom-up, using a 
standards-based browser of choice as the baseline, along maybe with IE7, 
and then adding CSS3 for browsers that support it. Its benefit is that it is 
easy to work with when you’re just getting used to CSS3, and it’s also a 
sensible approach when adding CSS3 to older websites.
Whichever approach you choose, there are a number of things to consider, 

Smashing eBook #19│Mastering CSS3│ 216



what with all the CSS3 properties that are coming out. Later on, we will look 
at considerations for certain key properties.

How To Do It?
Whatever your approach, you will no doubt find yourself thinking through 
the common fallback process at some point: what would this element look 
like with a certain property, and what would it look like without it? Would it 
look fine or broken? If it would look broken, there’s a good chance you will 
need to do something about it.

As a typical path, you would first implement a feature with CSS3, then with 
CSS 2.1, then (maybe) with JavaScript, and then with whatever hack you 
used to use for legacy browsers. You could argue that progressive 
enhancement would slightly modify this path, using CSS 2.1 first, then CSS3.

At each stage, you should determine whether degrading or enhancing a 
feature would become unnecessarily complex and whether simply providing 
an alternative would be more sensible.

ORDERING PROPERTIES

Let’s take a quick look at ordering properties and how browsers interpret 
them. Browser makers initially offer CSS3 functionality via browser prefixes: 
-moz for Mozilla, -webkit for Chrome and Safari, -o for Opera, etc. Each 
browser then ignores any prefixes not meant for it. The convention is to list 
the browser-specific prefixes first and then the default property, as follows:

.somediv {
 -moz-border-radius: 5px;
 -webkit-border-radius: 5px;
 border-radius: 5px; }

Smashing eBook #19│Mastering CSS3│ 217



Yes, this creates a little overhead, but when you consider how such effects 
were achieved before CSS3, it’s really not much.

Browsers that don’t support the property will ignore it. Any browser that 
does support it will implement its browser-specific version; and when it 
eventually supports the generic property, it will implement that.

Why order it in this way? Once all of the browsers implement a property the 
same way, then they will adopt the default version of the property; until then, 
they will use the prefixed version. By listing the properties in the order 
shown above, we ensure that the standard version is implemented as the 
fallback once it is supported, hopefully leading to more consistent rendering 
across browsers.

JavaScript
JavaScript is the most common method of enabling cross-browser CSS3 
features support, and it can either be used as a substitute for or to enable 
CSS3 properties in older browsers or be used as an alternative.

MODERNIZR

A useful JavaScript tool for implementing CSS3 fallbacks is Modernizr. For 
anyone working with CSS3 in a production environment (as opposed to 
merely as a proof of concept), it is essential. Modernizr enables you to use 
CSS3 for properties where it is supported, and to provide sensible 
alternatives where it isn’t.

Smashing eBook #19│Mastering CSS3│ 218



Modernizr works by adding classes to the html element of the page, which 
you would then call in the style sheet.

For example, to display a different background when CSS3 gradients are not 
supported, your code would look something like this:

.somediv {
 background: -webkit-gradient(linear, 0% 0%, 0% 100%,
   from(#660C0C), to(#616665), color-stop(.6,#0D0933)); }

.no-cssgradients .somediv {
 background: url('/images/gradient.jpg'); }

Smashing eBook #19│Mastering CSS3│ 219



Conversely, to display a different background only where the CSS3 property 
is supported, you would do this:

.cssgradients .somediv {
 background: -webkit-gradient(linear, 0% 0%, 0% 100%,
   from(#660C0C), to(#616665), color-stop(.6,#0D0933));}

.somediv {
 background: url('/images/gradient.jpg'); }

In this way, you control what is shown in the absence of a property, and you 
tailor the output to what is sensible. In this case, you could serve a gradient 
image in the absence of support for CSS3 gradients.

With this additional control, you can tailor the output quite accurately and 
avoid any clashes that might arise from a missing property.

CSS3 PIE

Sadly, this has nothing to do with the tasty dessert. CSS3 PIE stands for 
progressive Internet Explorer. As the official description says:

PIE makes Internet Explorer 6 to 8 capable of rendering several of the 
most useful CSS3 decoration features.

Smashing eBook #19│Mastering CSS3│ 220

http://css3pie.com/
http://css3pie.com/


While it doesn’t support a myriad of features, it does allow you to use box-
shadow, border-radius and linear gradients in IE without doing much 
extra to the code. First, upload the CSS PIE JavaScript file, and then when 
you want to apply the functionality, you would include it in the CSS, like so:

.somediv {
 -webkit-border-radius: 5px;
 -moz-border-radius: 5px;
 border-radius: 5px;
 behavior: url(path/to/PIE.htc); }

Smashing eBook #19│Mastering CSS3│ 221



Fairly straightforward, and it can save you the hassle of having to use 
JavaScript hacks to achieve certain effects in IE.

SELECTIVZR

CSS3 has expanded its repertoire beyond advanced selectors such as 
[rel="selector"] and pseudo-selectors such as :focus, to include 
selectors such as :nth-of-type, which give you much more control and 
focus and allow you to dispense with a lot of presentational classes and IDs. 
Support for selectors varies greatly, especially with the wide variety of 
additional selectors being introduced.

Smashing eBook #19│Mastering CSS3│ 222



Therefore, the third weapon in your CSS3 arsenal will most likely be 
Selectivzr, which enables advanced CSS3 selectors to be used in older 
browsers and is aimed squarely at old IE versions.

Head over to the Selectivizr website and download and add the script. You 
will have to pair it with a JavaScript framework such as jQuery or MooTools, 
but chances are you’re working with one already. The home page is worth a 
quick look because not all selectors are supported by all JavaScript libraries, 
so make sure what you need is supported by your library of choice.

PROBLEMS?

The main issue with all of the solutions above is that they’re based on 
JavaScript, and some website owners will be concerned about users who 
have neither CSS3 support nor JavaScript enabled. The best solution is to 
code sensibly and make use of natural CSS fallbacks and allow the browser 
to ignore CSS properties that it doesn’t recognize.

This may well make your website look a bit less like the all-singing, all-
dancing CSS3-based design that you had in mind, but remember that the 
number of people without CSS3 support and without JavaScript enabled will 
be low, and the best you can do is make sure they get a usable, functional 
and practical experience of your website, thus allowing you to continue 
tailoring the output to the user’s platform.

Smashing eBook #19│Mastering CSS3│ 223



Some CSS3 Properties: Considerations And Fallbacks
Many CSS3 properties are being used, and by now we have gotten used to 
the quirks and pitfalls of each iteration of the CSS protocol. To give you a 
quick start on some of the more popular CSS3 properties, we’ll look at some 
of the issues you may run into and some sensible ways to fall back in older 
browsers.

All of the information in this article about browser support is correct as of 
May 2011. You can keep up to date and check out further information about 
support by visiting findmebyIP. Support has not been checked in browser 
versions older than Chrome 7.0, Firefox 2.0, Opera 9, Safari 2 and Internet 
Explorer 6.

BORDER RADIUS

Support: Google Chrome 7.0+, Firefox (2.0+ for standard corners, 3.5+ for 
elliptical corners), Opera 10.5+, Safari 3.0+, IE 9

Property: border-radius
Vendor prefixes: -webkit-border-radius, -moz-border-radius
Example usage (even corners with a radius of 5 pixels):
.somediv {
 -moz-border-radius: 5px;
 -webkit-border-radius: 5px;
 border-radius: 5px; }

Smashing eBook #19│Mastering CSS3│ 224

http://findmebyip.com/dotnet
http://findmebyip.com/dotnet


Fallback behavior: rounded corners will display square.

WordPress log-in button in IE (left) and Google Chrome (right).

Without the hassle of extra divs or JavaScript or a lot of well-placed, well-
sliced images, we can give elements rounded corners with the use of the 
straightforward border-radius property.

What about browsers that don’t support border-radius? The easiest 
answer is, don’t bother. Is having rounded corners in unsupported browsers 
really worth the hassle? If it is, then you need only do what you’ve been 
doing for years: JavaScript hacks and images.

Could this property trip you up? Actually, border-radius is pretty 
straightforward. Be careful using it on background images, because there 
are certainly some bugs in some browser versions that keep the corners of 
images from appearing rounded. But aside from that, this is one of the best-
supported CSS3 properties so far.

Smashing eBook #19│Mastering CSS3│ 225



BORDER IMAGE

Support: Google Chrome 7.0+, Firefox 3.6+, Opera 11, Safari 3.0+, no support 
in IE

Property: border-image, border-corner-image

Vendor prefixes: -webkit-border-image, -moz-border-image

Example usage (a repeating image with a slice height and width of 10 
pixels):

.somediv {
 -webkit-border-image: url(images/border-image.png) 10 10 
repeat;
 -moz-border-image: url(images/border-image.png) 10 10 
repeat;
 border-image: url(images/border-image.png) 10 10 repeat; }

Fallback behavior: shows standard CSS border if property is set, or no 
border if not specified.

A border-image demo on CSS3.info. The bottom paragraph shows a standard 
property of border: double orange 1em.

Smashing eBook #19│Mastering CSS3│ 226

http://www.css3.info/preview/border-image/
http://www.css3.info/preview/border-image/


The border-image property is less heralded among the new properties, 
partly because it can be a bit hard to wrap your head around. While we 
won’t go into detail here, consider the image you are working with, and test 
a few variations before implementing the property. What will the border look 
like if the content overflows? How will it adjust to the content? Put some 
thought into your choice between stretch and repeat.

Experiment with an image before applying a border to make sure that 
everything is correct, and test different sizes and orientations to see how a 
repeating border looks.

A border image in use on Blog.SpoonGraphics. The image on the left is the base 
image for the border.

There isn’t much in the way of fallbacks, aside from the traditional method of 
coding for eight slice-image borders, mapped out with extra containing 
divs. This is a lot of work and is really unnecessary. Selecting an 
appropriate border color and width should be a sensible fallback for 
browsers without border-image support.

Smashing eBook #19│Mastering CSS3│ 227

http://blog.spoongraphics.co.uk/
http://blog.spoongraphics.co.uk/


BOX SHADOW

Support: Google Chrome 7.0+, Firefox 3.6+, Safari 3.0+, IE 9

Property: box-shadow

Vendor prefixes: -webkit-box-shadow, -moz-box-shadow (-moz 
no longer needed as of Firefox 4)

Example usage (showing a black shadow, offset down by 10 pixels and right 
by 10 pixels, and with a blur radius of 5 pixels):

.somediv {
 -moz-box-shadow: 10px 10px 5px #000;
 -webkit-box-shadow: 10px 10px 5px #000;
 box-shadow: 10px 10px 5px #000; }

Fallback behavior: shadow is not displayed.

Box shadow allows you to quickly and easily add a little shadow to your 
elements. For anyone who has used shadows in Photoshop, Fireworks or 
the like, the principles of box shadow should be more than familiar.

A subtle box shadow on the left, and a selective borders fallback on the right.

Smashing eBook #19│Mastering CSS3│ 228



In its absence? You could use selective borders (i.e. a left and bottom 
border to imitate a thin box shadow).

.somediv {
 -moz-box-shadow: 1px 1px 5px #888;
 -webkit-box-shadow: 1px 1px 5px #888;
 box-shadow: 1px 1px 5px #888; }

.no-boxshadow .somediv {
 border-right: 1px solid #525252;
 border-bottom: 1px solid #525252; }

RGBA AND HSLA

RGBa support: Google Chrome 7.0+, Firefox 3.0+, Opera 10+, Safari 3.0+, IE 
9

HSLA support: Google Chrome 7.0+, Firefox 3.0+, Opera 10+, Safari 3.0+

Property: rgba, hsla

Fallback behavior: the color declaration is ignored, and the browser falls 
back to the previously specified color, the default color or no color.

.somediv {
 background: #f00;
 background: rgba(255,0,0,0.5); }

Smashing eBook #19│Mastering CSS3│ 229



In the example above, both background declarations specify the color red. 
Where RGBa is supported, it will be shown at 50% (0.5), and in other cases 
the fallback will be to the solid red (#f00).

24 Ways makes great creative use of RGBa.

While there is broad support for opacity, its downside is that everything 
associated with an element becomes transparent. But now we have two 
new ways to define color: RGBa (red, green, blue, alpha) and HSLa (hue, 
saturation, light, alpha).

Both offer new ways to define colors, with the added benefit of allowing you 
to specify the alpha channel value.

The obvious fallback for RGBa and HSLa is a solid color; not a problem, but 
the main thing to watch out for is legibility. A semi-transparent color can 
have quite a different tone to the original. An RGB value shown as a solid 
color and the same value at .75 opacity can vary massively depending on 
the background shade, so be sure to check how your text looks against the 
background.

Smashing eBook #19│Mastering CSS3│ 230

http://24ways.org/
http://24ways.org/


Changing transparency can affect the legibility of overlaid text.

If transparency is essential, you could also use a background PNG image. Of 
course, this brings with it the old IE6 problem, but that can be solved with 
JavaScript.

TRANSFORM

Support: Google Chrome 7.0+, Firefox 3.6+, Opera 10.5+, Safari 3.0+

3-D transforms support: Safari

Property: transform

Vendor prefixes: -o-transform

Example usage (rotating a div 45° around the center, and scaling it to half 
the original size — for illustration only, so the translate and skew values 
are not needed):

.somediv {
 -webkit-transform: scale(0.50) rotate(45deg)
    translate(0px, 0px) skew(0deg, 0deg);
 -webkit-transform-origin: 50% 50%;
 -moz-transform: scale(0.50) rotate(45deg)
    translate(0px, 0px) skew(0deg, 0deg);
 -moz-transform-origin: 50% 50%;
 -o-transform: scale(0.50) rotate(45deg)

Smashing eBook #19│Mastering CSS3│ 231



    translate(0px, 0px) skew(0deg, 0deg);
 -o-transform-origin: 50% 50%;
 transform: scale(0.50) rotate(45deg)
    translate(0px, 0px) skew(0deg, 0deg);
 transform-origin: 50% 50%; }

Fallback behavior: the transform is ignored, and the element displays in its 
original form.

Westciv offers a useful tool for playing around with transforms.

The transform property gives you a way to rotate, scale and skew an 
element and its contents. It’s a great way to adjust elements on the page 
and give them a slightly different look and feel.

Smashing eBook #19│Mastering CSS3│ 232

http://www.westciv.com/tools/transforms/index.html
http://www.westciv.com/tools/transforms/index.html


A simple fallback in the absence of an image-based transform is to use an 
alternative image that is already rotated. And if you want to rotate content? 
Well, you can always use JavaScript to rotate the element. Another simple 
alternative is to rotate the background element in an image editor 
beforehand and keep the content level.

We’ve gotten by with level elements for so many years, there’s no reason 
why people on old browsers can’t continue to put up with them.

ANIMATIONS AND TRANSITIONS

Transitions support: Google Chrome 7.0+, Firefox 4.02, Opera 10.5+, Safari 
3.0+

Animations support: Google Chrome 7.0+, Safari 3.0+

Property: transition

Vendor prefixes: -webkit-transition, -moz-transition, -o-
transition

Example usage (a basic linear transition of text color, triggered on hover):

.somediv:hover {
 color: #000;
 -webkit-transition: color 1s linear;
 -moz-transition: color 1s linear;
 -o-transition: color 1s linear;
 transition: color 1s linear; }

A basic animation that rotates an element on hover:

@-webkit-keyframes spin {
 from { -webkit-transform: rotate(0deg); }
 to { -webkit-transform: rotate(360deg); }
 }

Smashing eBook #19│Mastering CSS3│ 233



.somediv:hover {
 -webkit-animation-name: spin;
 -webkit-animation-iteration-count: infinite;
 -webkit-animation-timing-function: linear;
 -webkit-animation-duration: 10s; }

Fallback behavior: both animations and transitions are simply ignored by 
unsupported browsers. With animations, this means that nothing happens, 
and no content is animated. With transitions, it depends on how the 
transition is written; in the case of a hover, such as the one above, the 
browser simply displays the transitioned state by default.

The 404 page for the 2010 Future of Web Design conference attracted attention 
for its spinning background. Visit the website in IE and you’ll see a static 
background image.

Smashing eBook #19│Mastering CSS3│ 234



Animations and transitions in CSS3 are slowly seeing more use, from subtle 
hover effects to more elaborate shifting and rotating of elements across the 
page. Most effects either start right at page load or (more frequently) are 
used to enhance a hover effect. Once you get down and dirty with 
animations, there’s great fun to be had, and they’re much more accessible to 
designers now than before.

Starting off small with the CSS3 transition property is best, subtly 
transitioning things such as link hovers before moving on to bigger things.

Once you’re comfortable with basic transitions and transforms, you can get 
into the more involved animation property. To use it, you declare 
keyframes of an animation with @-webkit-keyframes and then call this 
keyframe animation in other elements, declaring its timing, iterations, etc. 
Note that animations work better with CSS3 transforms than with other 
properties, so stick to transform and translate rather than shifting 
margins or absolute positioning.

Of course, people have been animating with JavaScript for years. But if you 
want to do something as simple as animating a hover state, then it hardly 
seems worth the extra coding. The simplest thing to do for unsupported 
browsers is to specify a state for hover, without any transition to it.

FONT FACE (NOT NEW IN CSS3)

Support for different font formats: Google Chrome 7.0+, Firefox 3.1+, Opera 
10+, Safari 3.1+, IE 6+

Property: @font-face

Example usage (a @font-face declaration for Chunk Five, an OTF font, 
and calling it for h1 headings):

Smashing eBook #19│Mastering CSS3│ 235



@font-face {
 font-family: ChunkF; src: url('ChunkFive.otf'); }

h1 {
 font-family: ChunkF, serif; }

Fallback behavior: just as when any declared font isn’t available, the 
browser continues down the font stack until it finds an available font.

The New Adventures in Web Design conference serves fonts from Typekit.

Okay, this isn’t strictly new to CSS3. Many of you will point out that this has 
been around as long as IE5. However, text replacement is certainly starting 
to see increased usage as browser makers roll out increased support for 
@font-face.

One issue that @font-face suffers from is that a font isn’t displayed on 
the screen until the browser has downloaded it to the user’s machine, which 
sometimes means that the user sees a “flash of unstyled text” (FOUT). That 
is, the browser displays a font from further down the stack or a default font 
until it has finished downloading the @font-face file; once the file has 
downloaded, the text flashes as it switches to the @font-face version. So, 

Smashing eBook #19│Mastering CSS3│ 236

http://newadventuresconf.com/
http://newadventuresconf.com/
http://www.typekit.com/
http://www.typekit.com/


minimizing the flash by stacking fonts of a similar size and weight is 
important. If the stack is poorly compiled, then not only could the text be 
resized, but so could containing elements, which will confuse users who 
have started reading the page before the proper font has loaded.

The good news is that Firefox 4 doesn’t has a FOUT any longer, IE9, 
however, does have a FOUT but WebInk has written a script FOUT-B-GONE 
which takes these facts into account and helps you hide the FOUT from your 
users in FF3.5-3.6 and IE.

On his blog, Web designer Florian Schroiff uses @font-face to serve the Prater 
font (bottom), falling back to Constina, Georgia (top) and Times New Roman.

Many font delivery services, including TypeKit and Google Web Fonts, 
deliver their fonts via JavaScript, which gives you control over what is 
displayed while the font is being downloaded as well as what happens when 
the font actually loads.

Because browsers wait until the full file of a font kit has loaded before 
displaying it, plenty of services allow you to strip out unnecessary parts of 
the kit to cut down on size. For example, if you’re not going to be using 

Smashing eBook #19│Mastering CSS3│ 237

http://www.extensis.com/en/WebINK/fout-b-gone/
http://www.extensis.com/en/WebINK/fout-b-gone/
http://blog.florianschroiff.com/
http://blog.florianschroiff.com/
http://tyepkit.com/
http://tyepkit.com/
http://www.google.com/webfonts
http://www.google.com/webfonts


small caps, then you can strip it out of the file so that the font renders more 
quickly.

ADVANCED SELECTORS

Support (varies depending on the selector used): Google Chrome 7.0+, 
Firefox 3.6+, Opera 9.0+, Safari 2.0+, IE 6+

Property: many, including :nth-of-type, :first-child, :last-
child, [attr="…"]

Example usage (coloring only links that point to Smashing Magazine, and 
coloring odd-numbered rows in tables):

a[href*=smashingmagazine.com] {
 color:#f00; }

tr:nth-of-type(odd) {
 background: #ddd; }

Fallback behavior: In the absence of support for advanced selectors, the 
browser does not apply the targeted style to the element and simply treats it 
as any other element of its type. In the two examples above, the link would 
take on the standard link properties but not the specified color, and the odd-
numbered table rows would be colored the same as other table rows.

Advanced selectors are a great tool for reducing the code on a website. You 
will be able to get rid of many presentational classes and gain more control 
of the selections in your style sheet.

Smashing eBook #19│Mastering CSS3│ 238



Using Selectivzr, you can get older browsers to support these advanced 
selectors, which makes the selectors easier to use and more robust.

We can easily assign styles using nth-type selectors. However, because the 
styles in this example are tied directly to the content, sticking to class names 
would be better, unless you are 100% certain that the order of words won’t 
change.

Abandoning classes and IDs altogether in favor of nth-type is tempting. 
But don’t throw them away just yet. Use advanced selectors when an 
element’s style is based on its location in the document or a series; for 
example, using nth-type(odd) for table rows or using last-of-type to 
remove some padding at the bottom of a list.

If an element’s style is based on its content, then stick with classes and IDs. 
That is, if inserting a new element or changing the order of items would 
break the style, then stick with the old method.

However, if an element is already sufficiently styled, then you probably don’t 
need an additional class or ID at all (nor an advanced selector, for that 
matter).

Smashing eBook #19│Mastering CSS3│ 239



COLUMNS

Support: Google Chrome 7.0+, Firefox 2.0+, Safari 3.0+, Opera 11.10+

Property: column-count

Vendor prefixes: -webkit-column-count, -moz-column-count

Example usage (splitting content into three columns):

.somediv {
 -moz-column-count: 3;
 -webkit-column-count: 3;
 column-count: 3; }

Fallback behavior: in the absence of support for multiple columns, the 
browser spreads the content across the full width that the columns would 
have taken up.

Multiple columns and their fallback on Inayaili de León’s website.

Smashing eBook #19│Mastering CSS3│ 240

http://yaili.com/
http://yaili.com/


This property give you a nice easy way to spread content across multiple 
columns. The technique is standard in print, and on the Web it makes it easy 
to read content without needing to scroll. But you didn’t need me to tell you 
that, did you?

Because the property’s main purpose is to allow users to read horizontally 
without scrolling, first make sure that your columns aren’t too tall. Having to 
scroll up and down to read columns not only defeats their purpose but 
actually makes the content harder to read.

There are some JavaScript solutions for multiple columns. For older 
browsers, though, there’s generally no need to stick with a multi-column 
layout; rather, you could consider sensible alternatives for fallbacks.

Without support for multiple columns, the block quotes on tweetCC change in 
style.

In the absence of CSS3 support, the browser will flow content across the full 
width of the container. You’ll want to be careful about legibility. It can be 
very heard to read content that spans the width of an area that is intended 
to be broken into three columns. In this case, you’ll want to set a suitable 
line length. There are a few ways to do so: increase the margins, change the 

Smashing eBook #19│Mastering CSS3│ 241

http://tweetcc.com/
http://tweetcc.com/


font size or decrease the element’s width. Floating elements such as images 
and block quotes out of the flow of text can help to fill up any leftover space 
in the single column.

GRADIENTS

Support: Google Chrome 7.0+ for -webkit-gradient, Google 10+ for -
webkit-linear-gradient and -webkit-radial-gradient, Firefox 
3.6+, Safari

Property: linear-gradient, radial-gradient

Vendor prefixes: -webkit-gradient, -webkit-linear-gradient, 
-webkit-radial-gradient, -moz-linear-gradient, moz-
radial-gradient

Example usage (a linear white-to-black gradient running from top to bottom 
— notice the lack of -linear- in the Webkit declaration):

.somediv {
 background-image: -webkit-gradient(linear, 0% 0%, 0% 100%,
   from(#ffffff), to(#000000));
 background-image: -webkit-linear-gradient(0% 0%, 0% 100%,
   from(#ffffff), to(#000000));
 background-image: -moz-linear-gradient(0% 0% 270deg,
   #ffffff, #000000);
 background-image: linear-gradient(0% 0% 270deg,
   #ffffff, #000000); }

A radial gradient running from white in the center to black on the outside:

.somediv {
 background-image: -moz-radial-gradient(50% 50%, farthest-
side,
   #ffffff, #000000);

Smashing eBook #19│Mastering CSS3│ 242



 background-image: -webkit-gradient(radial, 50% 50%, 0, 50% 
50%, 350,
   from(#ffffff), to(#000000));
 background-image: -webkit-radial-gradient(50% 50%, 0, 50% 
50%, 350,
   from(#ffffff), to(#000000));
 background-image: radial-gradient(50% 50%, farthest-side,
   #ffffff, #000000); }

Fallback behavior: the browser will show the same behavior as it would for 
a missing image file (i.e. either the background or default color).

ColorZilla’s Ultimate CSS Gradient Generator offers a familiar interface for 
generating gradients.

Ah, the good ol’ Web 2.0 look, but using nothing but CSS. Thankfully, 
gradients have come a long way from being used for glossy buttons, and 
this CSS3 property is the latest step in that evolution.

Gradients are applied the way background images are, and there are a few 
ways to do it: hex codes, RGBa and HSLa.

Smashing eBook #19│Mastering CSS3│ 243

http://www.colorzilla.com/gradient-editor/
http://www.colorzilla.com/gradient-editor/


Be careful when applying a background with a height of 100% to an element 
such as the body. In some browsers, this will limit the gradient to the edge of 
the visible page, and so you’ll lose the gradient as you scroll down (and if 
you haven’t specified a color, then the background will be white). You can 
get around this by setting the background-position to fixed, which 
ensures that the background doesn’t move as you scroll.

Specifying a background color not only is a good fallback practice but can 
prevent unforeseen problems. As a general rule, set it either to one end of 
the gradient or to a color in the middle of the range.

Legibility is also a consideration. Making text readable against a solid 
background color is easy. But if a gradient is dramatic (for example, from 
very light to very dark), then choose a text color that will work over the range 
of the gradient.

Radial gradients are a bit different, and getting used to the origins and 
spreads can take a bit of playing around. But the same principles apply. 
Note that Webkit browsers are switching from the -webkit-gradient 
property to -webkit-linear-gradient and -webkit-radial-
gradient. To be safe, include both properties, but (as we have learned) put 
the old property before the new one.

These issues aren’t new; we’ve been using gradients for ages. If you really 
need one, then the obvious fallback is simply to use an image. While it won’t 
adapt to the dimensions of the container, you will be able to set its exact 
dimensions as you see fit.

Smashing eBook #19│Mastering CSS3│ 244



MULTIPLE BACKGROUNDS

Support: Google Chrome 7.0+, Firefox 3.6+, Safari 2.0+, IE 9

Property: background

Example usage (multiple backgrounds separated by a comma, the first on 
top, the second behind it, the third behind them, and so on):

.somediv {
 background: url('background1.jpg') top left no-repeat,
   url('background2.jpg') bottom left repeat-y,
   url('background3.jpg') top right no-repeat; }

Fallback behavior: an unsupported browser will show only one image, the 
one on top (i.e. the first in the declaration).

The fantastic Lost World’s Fairs website shows multiple backgrounds in its 
header and a solid color as a fallback.

Smashing eBook #19│Mastering CSS3│ 245

http://lostworldsfairs.com/
http://lostworldsfairs.com/


Being able to set multiple background images is very useful. You can layer 
images on top of one another. And because CSS gradients can be applied 
as backgrounds, you can layer multiple images and gradients with ease.

You can also position background elements within dynamically sized 
containers. For example, you could have an image appear 25% down the 
container and then another at 75%, both of which move with any dynamic 
content.

If multiple backgrounds are essential to your website, you could insert 
additional elements and images into the DOM using JavaScript. But again, is 
this worth doing? A single well-chosen background image might work best. 
It could be a matter of picking the most important image or blending the 
images into a composite (even if this makes for a less dynamic background).

Use Only Where Needed
It’s worth repeating that CSS3 is not a necessity. Just because you can use 
CSS3 properties, doesn’t mean your website would be any worse off without 
them. Applying these effects is now so simple, and so getting carried away 
becomes all too easy. Do you really need to round every corner or use 
multiple backgrounds everywhere? Just as a film can work without 3-D, so 
should your design be able to work without CSS3 splashed everywhere 
indiscriminately. The technology is simply a tool to make our lives easier and 
help us create better designs.

It is a testament to those who are already using CSS3 that there are very few 
instances of its misuse at the moment. The websites that do seem to misuse 
it suggest that their designers either used CSS3 for its own sake or didn’t 
consider its implications on certain platforms.

Smashing eBook #19│Mastering CSS3│ 246



In “Web Design Trends 2010: Real-Life Metaphors and CSS3 Adaptation,” 
Smashing Magazine’s Vitaly Friedman notes a number of misuses of the 
text-shadow property.

A less-than-ideal use of CSS3 on SramekDesign.com.

The text-shadow property has certainly become popular. One-pixel white 
shadows are popping up in text everywhere for no apparent reason. As 
Vitaly says:

… before adding a CSS3 feature to your website, make sure it is actually 
an enhancement, added for the purpose of aesthetics and usability, and 
not aesthetics at the cost of usability.

Smashing eBook #19│Mastering CSS3│ 247

http://www.sramekdesign.com/
http://www.sramekdesign.com/


As you become familiar with CSS3’s new properties, you will learn to 
recognize when and where problems occur and where the properties aren’t 
really necessary.

Using CSS3
CSS3 is the future of the Web, no argument about that. So, versing yourself 
right now in the language of the future makes sense. While IE is still the 
single most popular browser, it now has less than half of the market share, 
meaning that the majority of people no longer use it and it can no longer be 
used as an excuse not to explore new possibilities and opportunities.

To use CSS3 means to embrace the principle that websites need not look 
the same in every browser, but rather should be tailored to the user’s 
browsing preferences via sensible fallbacks. It isn’t daunting or inaccessible, 
and the best way to learn is by diving in.

Smashing eBook #19│Mastering CSS3│ 248



About !e Authors

Dave Sparks
Dave Sparks is a web designer and developer who has dabbled on the web 
for over 10 years with more than six years of commercial experience. He is a 
part-timer who freelances and does work for Armitage Online. He can be 
found writing about various topics at Kamikazemusic.com and tweeting as 
@dsparks83. He also runs long distances, drinks lots of tea and spends time 
flying planes in his day job.

Louis Lazaris
Louis Lazaris is a freelance web developer based in Toronto, Canada. He 
blogs about front-end code on Impressive Webs and is a coauthor of HTML5 
and CSS3 for the Real World, published by SitePoint. You can follow Louis 
on Twitter or contact him through his website.

Peter Gasston
Peter is a web developer, writer, public speaker, and author of The Book of 
CSS3. He blogs at Broken Links and tweets as @stopsatgreen. He lives in 
London, England.

Smashing eBook #19│Mastering CSS3│ 249

http://www.armitageonline.co.uk/
http://www.armitageonline.co.uk/
http://www.kamikazemusic.com/
http://www.kamikazemusic.com/
http://twitter.com/dsparks83
http://twitter.com/dsparks83
http://www.impressivewebs.com/
http://www.impressivewebs.com/
http://www.sitepoint.com/books/htmlcss1/
http://www.sitepoint.com/books/htmlcss1/
http://www.sitepoint.com/books/htmlcss1/
http://www.sitepoint.com/books/htmlcss1/
http://twitter.com/ImpressiveWebs
http://twitter.com/ImpressiveWebs
http://twitter.com/ImpressiveWebs
http://twitter.com/ImpressiveWebs
http://thebookofcss3.com/
http://thebookofcss3.com/
http://thebookofcss3.com/
http://thebookofcss3.com/
http://broken-links.com/
http://broken-links.com/
http://twitter.com/stopsatgreen
http://twitter.com/stopsatgreen


Richard Shepherd
Richard (@richardshepherd) is a UK based web designer and front-end 
developer. He loves to play with HTML5, CSS3, jQuery and WordPress, and 
currently works full-time bringing VoucherCodes.co.uk to life. He has an 
awesomeness factor of 8, and you can also find him at 
richardshepherd.com.

Tom Gianna#asio
Tom Giannattasio happily makes things at nclud. He works as an Editor for 
Smashing Magazine and teaches at Boston University Center for Digital 
Imaging Arts. He loves to experiment and share his work on his personal 
site: attasi.

Tom Waterhouse
Pixel pusher by day, illustrator by night. Tom is a lead designer and when he 
isn't ruining his eyes in front of the computer, he'll be ruining them in front of 
a games console.

Trent Walton
Trent Walton is founder and 1/3 of Paravel Inc., a custom web design and 
development shop based out of the Texas Hill Country. When he’s not 
working on client projects, he’s probably writing & designing articles for his 
blog, or contributing ideas for the next edition of TheManyFacesOf.com.

Smashing eBook #19│Mastering CSS3│ 250

http://twitter.com/richardshepherd
http://twitter.com/richardshepherd
http://www.vouchercodes.co.uk/
http://www.vouchercodes.co.uk/
http://richardshepherd.com/
http://richardshepherd.com/
http://www.nclud.com/
http://www.nclud.com/
http://www.attasi.com/
http://www.attasi.com/
http://www.2dforever.com/
http://www.2dforever.com/
http://trentwalton.com/
http://trentwalton.com/
http://paravelinc.com/
http://paravelinc.com/
http://trentwalton.com/
http://trentwalton.com/
http://trentwalton.com/
http://trentwalton.com/
http://themanyfacesof.com/
http://themanyfacesof.com/


Vitaly Friedman
Vitaly Friedman loves beautiful content and doesn’t like to give in easily. 
Vitaly is writer, speaker, author and editor-in-chief of Smashing Magazine, an 
online magazine dedicated to designers and developers.

ZURB
ZURB is a close-knit team of interaction designers and strategists that help 
companies design better products & services through consulting, products, 
education, books, training and events. Since 1998 ZURB has helped over 
75+ clients including: Facebook, eBay, NYSE, Yahoo, Zazzle, Playlist, Britney 
Spears, among others.

Smashing eBook #19│Mastering CSS3│ 251

http://www.smashingmagazine.com/
http://www.smashingmagazine.com/
http://www.zurb.com/
http://www.zurb.com/

